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Preface 

The Nordic Energy Informatics Academy Conference 2025 (EIA Nordic 2025) brought 
together researchers, innovators, and professionals across Europe and beyond to explore 
how digitalization and informatics can accelerate the sustainable transformation of the 
energy sector. Held over three days, the conference served as a vibrant forum for knowl-
edge exchange, collaboration, and innovation at the intersection of energy systems and 
digital technologies. 

Thanks to the dedicated efforts of the organizing and technical program committees, a 
total of sixty-five (65) submissions were received for EIA Nordic 2025. Each submission 
was evaluated through a rigorous single-blind peer-review process, with three expert 
reviewers assigned to each paper. Reviews were based on relevance, scientific quality, 
originality, and clarity. According to the review policy, a manuscript was accepted only 
if it received at least two positive recommendations. 

As a result, fifty-one (51) high-quality research papers were accepted and presented 
across eleven thematic sections, including 43 full papers and 8 short papers. The strong 
alignment of submissions with the conference’s specific scope, as well as the high stan-
dard of contributions from experienced research groups and ongoing collaborations 
within the Nordic energy informatics community, contributed to this acceptance out-
come. All accepted papers are published in the Springer Lecture Notes in Computer 
Science (LNCS) series, ensuring global visibility and scientific impact. 

The conference opened with keynote speeches that set the tone for deep discussion 
on emerging energy informatics challenges and opportunities. The technical program 
included insightful presentations organized around the following focused themes:

• Energy Forecasting and Intelligent Control Systems
• District Heating, Thermal Systems, and Retrofit Strategies
• Building Simulation, Urban Energy, and Environmental Sensing
• Industrial Process Efficiency and Biomass Utilization
• Energy Informatics for Electric Vehicles and Mobility Systems
• Multi-Agent Systems and Local Market Coordination
• Policy, Metrics, and Infrastructure Performance
• Smart Building Systems and Semantic Data Integration
• Prosumer Optimization and Energy Storage in Local Energy Communities
• Grid-Oriented AI, Simulation, and Resilience
• Non-Intrusive Load Monitoring and Data Competitions 

Each session provided a platform to present cutting-edge methods, innovative appli-
cations, and empirical case studies that address real-world energy challenges—from 
grid flexibility and urban energy sensing to semantic data modeling, battery storage, and 
AI-based resilience strategies. 

In addition to the paper sessions, the conference featured a technical site visit to the 
KTH Live-in Lab, offering participants further opportunities to network and experience 
real-world energy innovation in action.



vi Preface

EIA Nordic 2025 once again demonstrated the value of interdisciplinary research and 
the power of digital tools to drive impactful solutions in energy systems. The conference 
fostered new ideas, strengthened collaborations, and inspired the community toward the 
continued advancement of energy informatics. 
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Control Systems



A Multi-stage Deep Learning Framework 
for Short-Term Electricity Load 

Forecasting 

Ege Kandemir(B), Agus Hasan, and Saleh A bdel-Afou Alaliyat

Norwegian University of Science and Technology, Ålesund, Norway
ege.kandemir@ntnu.no 

Abstract. Electricity load forecasting is essential for economic viabil-
ity and reliable operations in modern, complex power systems. Although 
traditional statistical methods and deep learning methods can be utilized 
for predictions, they tend to fall short in capturing complex non-linear 
behaviors with increasing demand. For this reason, in this study, a new 
cascaded method, Multi-Stage Deep Learning Framework (MSDL) is pro-
posed which can capture these behaviors more accurately. MSDL consists 
of three different architectures, namely Seasonal Decomposition (SD), 
Empirical Mode Decomposition (EMD), and Long Short-Term Mem-
ory (LSTM). In MSDL, the time series data is first decomposed into 
trend, seasonal, and residual components using SD. The residual compo-
nent is then further decomposed into Intrinsic Mode Functions (IMFs) 
using EMD to extract intricate, high-frequency patterns. These compo-
nents are subsequently used as inputs to LSTM models for forecasting.
Benchmarking results demonstrate that the proposed method outper-
forms several reference models in terms of RMSE, MAE, and MAPE.
The study also goes beyond performance comparison by investigating
the influence of the quantity of IMFs on forecast accuracy. It has been
shown that for the selected case study, including more than five IMFs in
forecasting does not significantly increase prediction performance.

Keywords: Electricity Load Forecasting · Cascaded Models · Seasonal 
Decomposition · Empirical Mo de Decomposition (EMD) · Long
Short-Term Memory (LSTM)

1 Introduction 

Electricity load forecasting is used to predict the electricity demand over some 
time horizons. This can vary from minutes to years depending on the applica-
tion purpose. Utilization of historical data and other related variables enhances
accurate forecasting for efficient operation in power systems for energy genera-
tion, distribution, and pricing [14]. Forecasting the load significantly influences 
production amount, demand locations, and resource allocation for reliable and

c The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
I. Martinac et al. (Eds.): EIA Nordic 2025, LNCS 16095, pp. 3–14, 2026. 
https://doi.org/10.1007/978-3-032-03101-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03101-3_1&domain=pdf
https://doi.org/10.1007/978-3-032-03101-3_1
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cost-effective energy supply. The increase in complexity of modern power sys-
tems such as the integration of renewable energy sources, decentralization, and 
the alteration in consumption patterns has increased the importance of load fore-
casting. The varying forecast intervals aim at different purposes; for instance,
short-term forecasting may aim to maintain real-time system stability, while
medium or long-term forecasting supports maintenance planning and invest-
ment decisions [3]. The lack of accurate predictions may lead to overproduction 
or underproduction, c ausing economic losses or grid instability.

The complex energy systems have increased the need for improved forecasting 
methods. Traditional statistical models are useful to some extent; however, most 
of the time, they fall short in capturing the non-linear behavior of demand, influ-
enced by external va riables such as weather conditions, economic activities, or
social behaviors. This has led to a growing interest in data-driven and cascaded
models [5]. Cascaded models combine multiple approaches like statistical mod-
els with machine learning algorithms, or multiple machine learning algorithms 
to overcome the limitations of standalone models. This approach l everages the
strength of each technique for more accurate capture of temporal and seasonal
patterns [7]. 

The main objective of the study is to improve the forecasting accuracy of 
electric load through a novel cascaded model. In this extension, the study aims to 
investigate historical load data using various decomposition methods to provide 
more relevant and condensed information for the predictive model. This approac h
seeks to address the limitations of traditional methods and deep learning models
by using a cascaded approach to contribute to more reliable energy management
systems.

1.1 Related Works 

Energy load forecasting is essential to support maintenance planning, grid stabil-
ity, and economic viability. Therefore, there have been sev eral studies available
in literature in this respect. In study [1], an analysis of different forecasting 
techniques is conducted. The study compares different machine learning and 
deep learning methods besides statistical methods. The analysis shows that the 
cascaded predictive models perform better than standalone models. Although 
there have been some studies showcasing the importance of single deep learn-
ing algorithms in terms of effectiveness in prediction [2, 9], most of the recent 
research focus on cascaded methods for short-term predictions. In study [21], a 
cascaded method combining convolutional neural networks (CNN) and sequence-
to-sequence (Seq2Seq) method with attention mechanisms is implemented for 
short-term multi-energy load forecasting. Compared to CNN and long short-term
memory (LSTM), the proposed method has higher accuracy. Similar to [21], in 
the study conducted by [13], a cascaded method is utilized for short-term energy 
load forecasting using CNN and attention mechanism. However, in this study, 
instead of the Seq2Seq algorithm, bidirectional gated recurrent units (BiGRU)
are implemented. Another similar study is made by [18], implementing LSTM 
instead of BiGRU. Even though there has not been any comparison between
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these three similar studies in terms of performance, in all of them it has been 
shown that the proposed cascaded models perform better than the standalone
algorithms. In the study [8], a cascaded method of CNN and stacked LSTM 
is used to forecast short-term load. The study compares accuracy with several 
machine learning and deep learning algorithms, showing the lowest error metric 
in the prop osed method. Another important method used in load forecasting is
empirical mode decomposition (EMD). The paper [12] uses EMD and BiLSTM 
to forecast the electric load by resolving time series into d ifferent components.
Similarly, in study [10], the EMD is applied to obtain intrinsic modes, then 
the modes are implemented into CNN and LSTM models with Bayesian opti-
mization to increase accuracy. The study shows that the integration of EMD 
greatly i mproves the forecast accuracy. Another study that implemented EMD
as a part of a cascaded model is done by [19]. Although forecasting is mainly 
aimed at wind speed prediction, the proposed method can be applied for load 
forecasting. The paper suggests using seasonal autoregressive integrated mov-
ing a verage (SARIMA) to extract linear features and nonlinear sequences before
implementing EMD and LSTM for prediction.

1.2 Contribution 

Based on the literature review, the most commonly used methods for electric 
load forecasting include CNN, LSTM, GRU, EMD, and attention mechanisms. 
In this paper, a novel cascaded forecasting framework, Multi-Stage Deep Learn-
ing Framework (MSDL), that integrates seasonal decomposition, empirical mode 
decomposition (EMD), and long short-term memory networks (LSTM) is pro-
posed to enhance the accuracy of hourly electricity load predictions. The aim of 
this approach is to better inform the deep learning model by leveraging residual 
components from seasonal decomp osition as input to EMD, which then gener-
ates multiple informative modes. These modes are subsequently used to train the
LSTM model. The effectiveness of the MSDL method is validated by benchmark-
ing it against several forecasting models, demonstrating its superior performance.

1.3 Outline 

In Sect. 2, the methodology implemented in this paper is explained. The section 
includes the architecture of the proposed model (MSDL), along with the other 
reference models that have been used in this concept. The section also presents
the real-world data used in the study with visual representation. In Sect. 3,  the  
results of the MSDL model, along with a comparison of the reference models, 
are given. The section includes the performance of each model, the required 
computational time to train each model, and the visual results of forecasting for
some instances. Besides the results, a deeper analysis of the findings is discussed
in the chapter. In Sect. 4, the key insights of the study are summarized with
suggestions for future research.
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2 Methodology 

2.1 Forecasting Algorithm 

This section explains the forecasting algorithms implemented in this study , as
listed in Table 1. To evaluate the performance of each model, root mean square 
error (RMSE), mean absolute error ( MAE), and mean absolute percentage
error (MAPE) are used [13]. 

Table 1. Algorithms with Corresponding Arch itectural Descriptions

Algorithm Model Arc hitecture

RNN RNN Layer (20 Units) + Dense L ayer (1 Unit)
LSTM LSTM Layer (20 Units) + Dense L ayer (1 Unit)
GRU GRU Layer (20 Units) + Dense L ayer (1 Unit)
SVR Kernel = rbf, C = 1 .0, epsilon = 0.1
MSDL Model SD + EMD + LSTM Layer (20 Units) + Dense Layer (1 Unit)

Fig. 1. Proposed Cascaded Model - Multi-Stage Deep Learning Framework (MSDL). 
The model is seasonally decomposed into trend, residual, and seasonality components. 
The residual component is further decomposed into intrinsic mode functions (IMFs) 
using empirical mode decomposition. Finally, the trend, seasonality, and IMFs are
modeled with LSTM network for prediction.

Figure 1 presents the architecture of the proposed Multi-Stage Deep Learn-
ing (MSDL) algorithm. The proposed cascaded model (MSDL) consists of three
main components: Seasonal Decomposition, Empirical Mode Decomposition, and
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Long Short-Term Memory (LSTM). The model first decomposes the time series 
into three components: trend, seasonality, and residual. The residual component 
is further decomposed into several Intrinsic Mode Functions. The trend, season-
ality, and IMFs are then used as inputs to an LSTM model for prediction. Finally, 
the predictions from each model are combined to generate the final load forecast.
This cascaded approach aims to enhance prediction accuracy by decomposing
the time series to extract more detailed information from the data.

Recurrent Neural Networks (RNN) are mainly specialized for sequential data. 
Despite the feedforward neural networks, RNNs have a hidden state .ht that 
contains the information from previous elements in the sequence. In Eq. 1,  the  
architecture of RNN is given for time . t. .xt is the input at time . t, .ht−1 is the hidden 
state from the previous time step, .Wxh, .Whh,  and .Why are weight matrices, . bh
and .by are bias vectors, and . σ denotes an activation function. RNNs can capture 
temporal dependencies, but they often suffer from the vanishing and exploding
gradient problems [11]. 

.
ht = σ(Wxhxt + Whhht−1 + bh)
yt = Whyht + by

(1) 

Long Short-Term Memory Networks (LSTM) aim to overcome the vanishing 
gradient problem in RNNs with the introduction of memory cells to keep the 
information over long perio ds. LSTM mainly consists of three main gates, which
are input, forget, and output. In Eq. 2, a detailed mathematical explanation is 
given, where . denotes element-wise multiplication, . σ is the sigmoid activation 
function, and .tanh is the hyperbolic tangent function. The terms . ft, . it, . Ct, . ot, 
and .ht refer to the forget gate, input gate, cell state update, output gate, and
hidden state, respectively [20]. 

.

ft = σ(Wf · [ht−1, xt] + bf )
it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft Ct−1 + it C̃t

ot = σ(Wo · [ht−1, xt] + bo)
ht = ot tanh(Ct)

(2) 

Gated Recurrent Unit (GRU) is similar to LSTM, where the forget and input 
gates merge into a single up date gate. This allows computational efficiency com-
pared to LSTM. In Eq. 3, the details of the method are shown. . zt, . rt, . h̃t,  a  nd
.ht are the update gate, reset gate, candidate hidden state, and hidden states
update, respectively [16]. 

.

zt = σ(Wz[ht−1, xt] + bz)
rt = σ(Wr[ht−1, xt] + br)

h̃t = tanh(Wh[rt ∗ ht−1, xt] + bh)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t

(3)
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Support Vector Regression (SVR) is the equivalent of support vector 
machines for regression problems. The idea behind SVR is to find a function
that best fits a hyperplane with a certain margin of tolerance . . In Eq. 4,  the  
objective function of SVR is given, and constraints are in Eq. 5. . w, . b, . , . C, . ξi, 
and .ξ∗

i are the weight vector, bias term, tolerance margin, penalty parameter, 
and slack variables, respectively [17]. 

.
1
2

w 2 + C
n

i=1

(ξi + ξ∗
i ) (4) 

.

yi − wTxi − b ≤ + ξi

wTxi + b − yi ≤ + ξ∗
i

ξi, ξ
∗
i ≥ 0 for all i = 1, . . . , n

(5) 

Fig. 2. Empirical Mode Decomposition Flowchart. The method starts with identifying 
local maxima and minima, from which upper and lower envelopes are created. The 
average of these envelopes is subtracted to produce a candidate IMF (or detail). This 
process rep eats until the component meets IMF criteria. Once an IMF is extracted, it
is removed from the original signal, and the residue is decomposed further.

Seasonal Decomposition (SD) separates the time series into three compo-
nents: Trend . Tt, Seasonalit y . St, and Residual . Rt. The Trend component com-
putes long-term progression using a centered moving average, while Seasonality 
focuses on capturing repeating short-term cycles. The Residual is the remaining 
component after subtracting seasonality and trend from the original data. Sea-
sonal decomposition can have two models: additive and multiplicative. In Eq. 6, 
the additive model is given, and in Eq. 7, the multiplicative model is presented [6]. 

.yt = Tt + St + Rt (6)
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.yt = Tt × St × Rt (7) 

Empirical Mode Decomposition (EMD) is a data-driven signal processing 
technique that decomposes nonlinear and non-stationary time series into a finite 
set of Intrinsic Mode Functions (IMFs) and a residual. Each IMF needs to satisfy 
two criteria: (1) the number of extrema and the number of zero crossings must 
either be equal or differ by at most one, and (2) the mean value of the envelope
defined by the local maxima and minima must be close to zero. The flowchart of
Empirical Mode Decomposition is shown in Fig. 2. In Eq. 8, the signal decompo-
sition is illustrated, where .IMFi(t) represents the .ith intrinsic mode f unction,
.rn(t) is the final residual, and .x(t) is the signal of interest [15]. 

.x(t) =
n

i=1

IMFi(t) + rn(t) (8) 

2.2 Data Description 

In this study, hourly aggregated electricity load values from the European Net-
work of Transmission System Operators for Electricity (ENTSO-E) are uti-
lized [4]. The dataset is univariate, consisting of hourly load values from various 
European countries. However, this paper focuses solely on the electricity load 
statistics for Norway, covering the period from January 1st to December 31st, 
2024. The l oad values, measured in megawatts (MW), range from a minimum of
9,862 MW to a maximum of 24,930 MW throughout the year. Figure 3 displays 
the time series of hourly load data for Norway in 2024. Prior to analysis, the 
data was normalized to a 0–1 scale. The time series is s tructured as sequences of
24 hourly instances, with each sequence representing a single day load pattern.

Fig. 3. Time series plot showing hourly electricity load (in MW) for Norway from 
January 1st to December 31st, 2024. The data sourced from ENTSO-E each point
represents the total load recorded at a given hour.
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3 Results and Discussion 

In this section, the results of the study are discussed through detailed analysis 
and comparison. As shown in Table 1, five different architectures were imple-
mented: RNN, LSTM, GRU, SVR, and a MSDL. Each model was trained on 
the same dataset, which was split into training and testing subsets. The goal 
of this analysis is to evaluate forecast performance and assess the impact of 
the M SDL on prediction accuracy. The four standalone models, which are RNN,
LSTM, GRU, and SVR, were used as baseline references. Among them, as shown
in Table 2 the LSTM model achieved the best performance, with RMSE, MAE, 
and MAPE values of 0.017671, 0.013299, and 0.027436, respectively. This aligns 
with findings on the effectiveness of LSTM in capturing long-term dependencies 
in time-series data. On the other hand, SVR showed the worst performance, with 
RMSE, MAE, and MAPE values of 0.045474, 0.036862, and 0.085639, respec-
tively. GRU and RNN pe rformed moderately but did not outperform LSTM.
These results confirm that deep learning architectures are more capable of mod-
eling complex temporal dependencies in electric load forecasting compared to
traditional machine learning models like SVR.

Table 2. Performance Comparison of Models on Test Data Based on RMSE, MAE,
and MAPE

Model Numbe r Model Name RMSE MAE MAPE Training Time (s)
Model 1 RNN 0.019070 0.014231 0.028882 34.044880 
Model 2 LSTM 0.017671 0.013299 0.027436 142.583476 
Model 3 GRU 0.018305 0.014054 0.028653 127.845189 
Model 4 SVR 0.045474 0.036862 0.085639 0.067142 
Model 5 MSDL Model (7 IMF)0.009097 0.007255 0.014979 324.863204 
Model 6 MSDL Model (6 IMF) 0.009102 0.007258 0.014997 311.788076 
Model 7 MSDL Model (5 IMF) 0.009440 0.007518 0.015567 293.982230 
Model 8 MSDL Model (4 IMF) 0.010761 0.008559 0.017765 270.970463 
Model 9 MSDL Model (3 IMF) 0.016582 0.012971 0.026944 234.412794 
Model 10 MSDL Model (2 IMF) 0.023838 0.019532 0.040799 191.949839 

The cascaded model was constructed by combining the Seasonal Decompo-
sition and EMD of the time series with an LSTM-based learning algorithm. 
Six variations of the cascaded model were trained, each using a different num-
ber of IMFs to investigate their c ontribution to forecasting. The best results
were obtained when the first seven IMFs were included as given in Table 2, 
achieving RMSE, MAE, and MAPE values of 0.009097, 0.007255, and 0.014979, 
respectively. In contrast, using only the first two IMFs resulted in the highest 
error metrics among the other cascaded models, with corresponding values of
0.023838, 0.019532, and 0.040799. These results demonstrate that increasing the
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Fig. 4. Intrinsic Mode Functions (IMFs) extracted using Empirical Mode Decompo-
sition (EMD) applied to the residual component of a seasonal decomposition of time 
series data. T he ten resulting IMFs and residual capture distinct temporal patterns
aiming to improve forecasting performance.

Fig. 5. Comparison of the number of Intrinsic Mode Functions (IMFs) and model 
performance. The variation in three error metrics is shown: RMSE is represented by 
the blue curve, MAE by the orange curve, and MAPE by the green curve. The x-axis 
indicates the number of IMFs used in the model, and the y-axis shows the corresponding
error values for model predictions on the test data. (Color figure online)

number of IMFs initially enhances accuracy by providing the model with more 
information. However, the marginal benefit declines after a certain point, as
higher-order IMFs contain less information. Figure 4 shows the extracted IMFs 
and the residual component of the signal. As the decomposition progresses, the 
IMFs become smoother and less informative, i ndicating a decreasing influence
of returns in further decomposition. Notably, as in Table 2 model performance 
improves significantly as IMFs are added up to the fifth component. Beyond that 
point (from Cascaded Model - 5 IMF), the computational cost increases more
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Fig. 6. Comparison of LSTM, Cascaded Model, and test data over 96 h for six randomly 
selected cases. Blue curve shows test data, orange is the LSTM forecast, and green is 
the P roposed Cascaded model (MSDL). The x-axis represents hours, and the y-axis
shows scaled electric load.(Color figure online)

than the marginal gain in accuracy as shown in Fig. 5. In all cases, using vary-
ing numbers of IMFs in cascaded models resulted in additional computational
expense, as shown in Table 2, due to increased model complexity. For instance, 
Model 10, which used two IMFs, did not improve prediction accuracy compared 
to Model 2, which employed a standalone LSTM architecture. However, the 
inclusion of a third IMF led to increased accuracy, as evidenced by improve-
ments across three different error metrics. This observation is consistent with
the findings of [10], who showed the correlation between the number of IMFs. It 
can support the search for an optimal balance between accuracy and resource
usage.

In addition to the numerical analysis, Fig. 6 presents six randomly selected, 
96-hour scaled prediction instances. Visually, the cascaded model follows the test 
data more closely than the standalone LSTM. While minor prediction overshoots 
are observed in the cascaded model for some time steps, overall, it shows a bet-
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ter fit to actual values. In contrast, LSTM alone exhibits more deviations. This 
visual inspection supports the quantitative findings and highlights the advantage 
of decomposing complex time-series data into more detailed components before 
training. Besides improved accuracy, the cascaded model supports greater inter-
pretability. By examining the influence of individual IMFs, it provides insights 
into which components contribute most significantly to the prediction. This is 
especially beneficial for energy demand forecasting that requires e xplainability.
However, it should be noted that including more IMFs for forecasting increases
the computational cost of training the model. Therefore, depending on the appli-
cation and dataset, the most efficient number of IMFs should be determined.

4 Conclusion 

In this study, a comprehensive analysis of various forecasting algorithms for 
hourly electricity load prediction was conducted. Among the standalone models, 
LSTM achieved the best performance due to its ability to capture long-term 
temporal dependencies. However, MSDL significantly outperformed all baseline 
models, including LSTM. Notably, incorporating the first seven Intrinsic Mode 
Functions (IMFs) led to the highest accuracy with the lowest RMSE, MAE, and 
MAPE values. The study also highlights a trade-off between predictive accuracy 
and computational cost when including a larger number of IMFs. The fore-
casting results were further validated through visual inspection, whic h aligned
with quantitative metrics. Future research could explore alternative time series
decomposition methods, such as Variational Mode Decomposition or Wavelet
Transform, to enhance interpretability and further improve forecasting perfor-
mance.
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Abstract. The growing adoption of solar energy presents both an 
opportunity and a challenge. While clean and sustainable, solar power 
generation is inherently variable due to changing weather conditions, 
making reliable forecasting critical for grid integration, infrastructure 
planning, optimal solar panel placement, and overall energy stability. 
Solaris AI addresses these challenges by integrating Generative AI with 
traditional Deep Learning models, creating an intelligent and explainable 
expert system for solar energy analysis. The system initially featured an 
Artificial Neural Network (ANN) model trained on key meteorological 
parameters such as cloud cover, humidity, temperature, and wind speed 
to predict solar power output. It was later enhanced with a Long Short-
Term Memory (LSTM) model, which is better suited for handling time-
series patterns in solar power output. To make these insights accessible 
to a wider audience, Solaris AI incorporates Retrieval-Augmented Gen-
eration (RAG) using OpenAI’s language models and LangChain. The 
model, along with the dataset, is integrated into the system to generate 
explainable and accurate forecasts through natural language interaction. 
This enables stakeholders, including government planners, policymak-
ers, businesses, grid operators, and citizens, to interact with the system 
conversationally, retrieve relevant data, and receive model predictions. 
A clean web interface with cloud deployment ensures scalability and 
usability. By bridging the gap between technical forecasts and practical 
decision-making, Solaris AI supports the broader adoption and integra-
tion of solar energy worldwide. 
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system · OpenAI 

c The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
I. Martinac et al. (Eds.): EIA Nordic 2025, LNCS 16095, pp. 15–31, 2026. 
https://doi.org/10.1007/978-3-032-03101-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03101-3_2&domain=pdf
https://doi.org/10.1007/978-3-032-03101-3_2


16 M. F. Faisal et al.

1 Introduction 

In response to the increasing global energy demands and the urgent shift toward 
sustainable alternatives, solar energy has emerged as the cornerstone of the 
renewable energy revolution. It is an environmentally sustainable and viable 
source of energy with significant economic benefits. Optimizing s olar energy
usage and storage for future requires efficient prediction of solar power output
and this is where solar forecasting methods play a crucial role [1] It has been 
estimated that energy demand will increase by 48% between 2012–2040 [2, 3]. 
With the global shift towards clean energy, efficient solar power generation and 
forecasting have become crucial to optimize energy distribution, minimize power 
losses, and improve grid stability, especially in Middle Eastern countries, where 
sunlight is radiant almost throughout t he year. Although multiple renewable
energy sources are being explored in the global market, solar energy and wind
energy are most preferred [1]. 

Despite the growing adoption of solar energy, much of the research in this 
space has traditionally been rooted in electrical and mechanical engineering, 
focusing on hardware efficiency and photovoltaic material science. As a result,
solar forecasting remains underexplored in the context of artificial intelligence
[4]. When AI techniques are used, they often result in black-box models that 
lack interpretability, making it difficult for stakeholders to trust and act on pre-
dictions. In recent years, however, deep learning has shown promise in modelling
complex, nonlinear relationships within time-series data, leading to more accu-
rate and data-driven solar energy forecasting.

Solaris AI is designed to address these challenges. It combines the predictive 
capabilities of Deep Learning with the interpretability of Generative AI to cre-
ate an intelligent and explainable solar forecasting system. The system initially 
employed an Artificial Neural Network (ANN) trained on historical meteorologi-
cal features. It was later extended to a Long Short-Term Memory (LSTM) model, 
which is better suited for capturing long-range temporal dependencies in solar 
generation patterns. To make this forecasting process transparent and accessible,
we incorporate a Retrieval-Augmented Generation (RAG) pipeline that allows
the large language model (LLM) to interact not only with the historical dataset
but also with the trained model.

This means that Solaris AI can answer questions based on two sources: the 
underlying CSV data set containing detailed solar parameters such as tem-
perature, irradiance, and humidity, and the model’s real-time output. When 
a user asks, for example, “Why was solar output low yesterday?” or “How much 
power was generated this week?”, the system retrieves relevant data, interprets 
it, and presents an accurate, human-readable answer grounded in both empiri-
cal data and learned predictions while also preventing hallucinations. The RAG
system was implemented using LangChain, an open-source framework designed
for building applications with reliable large language models.

The deployment of Solaris AI is structured to be scalable, modular, and acces-
sible through an API built using FastAPI, and is containerized using Docker to
ensure consistent deployment across environments. The application is hosted
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serverlessly via AWS Lambda, enabling cost-efficient and on-demand opera-
tion without maintaining persistent infrastructure. DynamoDB is used to store 
queries and responses for auditing and future analysis, while asynchronous pro-
cessing via secondary Lambda functions ensures a responsive user experience.

By combining deep learning forecasting with generative reasoning, and 
deploying it through a robust cloud infrastructure, Solaris AI ensures that users 
receive both reliable predictions and meaningful explanations, eliminating the 
black-box nature of typical AI models. The result is a truly intelligent assistant
that not only forecasts but also understands and communicates solar energy
insights effectively.

In the following sections, we explore the technical components of Solaris AI 
in detail, including the model architectures, dataset selection, RAG pipeline, 
and deployment strategy. We also present a comparative evaluation of ANN and
LSTM models to highlight the evolution and performance gains of the system.

2 Related Work 
2.1 Solar Energy Forecasting Using Machine Learning and D eep

Learning Techniques

Solar energy is a widely available and environmentally friendly resource, mak-
ing it a key focus in the global transition toward renewable energy. Forecasting 
solar energy accurately is essential to ensure its efficient use and integration 
into modern systems. Initially, global solar radiation (GSR) forecasting was per-
formed using traditional mathematical and statistical models. However, recent 
advances in artificial intelligence (AI), with machine learning and deep learning 
techniques, have proven to be m ore effective in modelling complex, nonlinear
relationships between weather variables and solar power output. As a result,
solar forecasting has become more reliable and data-driven, supporting better
planning and decision-making in energy systems [1]. 

2.2 Hybrid Deep Learning Models for Time Series Fo recasting
of Solar Power

Accurate forecasting of solar power generation is vital for managing renewable 
energy systems. One study explored the use of hybrid deep learning models 
that combine Convolutional Neural Networks (CNN), Long Short-Term Memory
(LSTM), and Transformer architectures for time-series forecasting.

The research compared various combinations of these models, such as CNN-
LSTM-Transformer and Transformer-LSTM, against standalone versions. Per-
formance was evaluated using metrics, such as Mean Absolute Error (MAE), and 
optimizers such as Nadam were tested. The best results were achieved using the 
CNN-LSTM-Transformer hybrid model, which achieved an MAE of just 0.551%. 
In contrast, the Transformer–LSTM model performed poorly (MAE of 16.17%),
highlighting the importance of architecture choice in solar forecasting. This study
is among the first to examine transformer networks in hybrid forecasting models
for solar energy [4].
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2.3 Investigating Photovoltaic Solar Power Output Forecasting 
Using Machine Learning Algorithms

Integration of solar power into electrical grids can be a complicated process as it 
is highly dependent on daily weather conditions. To acknowledge this problem, 
there has been constant research and development to determine the best machine 
learning algorithms for PV solar power forecasting. Existing traditional models, 
such as artificial neural networks(ANN) and random forest(RF) algorithms, have 
shown strong performance. More recent studies have explored alternative algo-
rithms, including Decision T rees (DT), Extreme Gradient Boosting (XGB), and
Long Short-Term Memory (LSTM) networks. These newer models offer promis-
ing results for photovoltaic (PV) forecasting and highlight the growing role of
AI in managing renewable energy systems [5]. 

2.4 EF-LLM: Energy Forecasting LLM with AI-Assisted 
Automation, E nhanced Sparse Prediction, Hallucination
Detection

Recent advancements in large language models (LLMs) have also been applied 
to energy forecasting. The EF-LLM (Energy Forecasting LLM) system was pro-
posed to overcome the limitations of traditional forecasting models, which often 
require expert intervention and struggle with sparse data. EF-LLM combines 
temporal data with domain-specific knowledge to support both pre-forecasting 
and post-forecasting decision-making. It uses a multichannel architecture to han-
dle different types of input (suc h as text, numerical, and visual) and uses LoRA-
based modules for continuous learning. By enabling human-AI interaction and
incorporating multimodal data sources, EF-LLM enhances the accuracy and
accessibility of energy forecasting, particularly in data-scarce scenarios [6]. 

3 Methodology 

3.1 Data Selection and P reprocessing

Two datasets were used in different stages of development. The initial ANN 
model was trained on a GitHub dataset [7] lacking irradiance parameters. For 
the LSTM model, we used a richer, publicly available dataset [8] that includes 
key irradiance features (GHI, GTI) along with hourly solar power output and 
weather attributes such as temperature, humidity, wind speed, and UV index.

The power data was originally recorded at 15-min intervals, while weather 
data was hourly. To align these sources, the power data was r esampled to hourly
intervals using aggregation, and then merged with the weather data by times-
tamp.

Missing values were handled by dropping columns with high null counts and 
imputing remaining missing values using the column median. Negative or place-
holder values were also cleaned using median substitution. Outliers in the power
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column were replaced using values from the previous matching time pe riod to
preserve temporal consistency.

Categorical features (e.g., weather icon) were encoded using one-hot encod-
ing, and all numerical features were standardized to ensure uniform scaling dur-
ing LSTM training. The dataset was split chronologically into training (75%)
and testing (25%) sets to simulate realistic forecasting and avoid data leakage.

This cleaned and engineered dataset was used to train both the linear regres-
sion baseline and the L STM models for historical and forecast solar power pre-
diction.

3.2 Initial ANN Mo del

The initial ANN model was built using TensorFlow’s Keras and trained on the 
earlier GitHub dataset. It comprised several fully connected layers with ReLU 
activations and a final dense output layer. The model w as trained using Mean
Squared Error (MSE) as the loss function and evaluated using MSE, Root Mean
Squared Error (RMSE), and .R2 score. 

While the ANN achieved an .R2 of 0.778 on the test set, it lacked the ability 
to capture temporal dependencies and was limited by the absence of irradiance 
features. As such, the ANN is treated as a baseline, and the system was expanded
with a time-series-aware LSTM model trained on a more comprehensive dataset.

This model is developed using a sequential architecture implemented via Ten-
sorFlow’s Keras. The network structure is dynamic, allowing for flexible config-
uration of the number of layers and neurons per layer. In its standard configu-
ration, the model comprises multiple fully connected (dense) layers, each initial-
ized with a specified kernel initializer and activated using a nonlinear activation 
function-typically ReLU. The first layer accepts an input dimension equivalent
to the number of features in the dataset and is followed by one or more hidden
layers with the same activation and kernel parameters.

The final output layer is a single-node dense layer, designed to predict the 
solar energy generation value. The model is compiled using the Mean Squared 
Error (MSE) loss function, with the Adam optimizer to facilitate efficient 
gradient-based optimization. Mean Squared Error (MSE) is used as the primary 
loss function during the training of the ANN model. It measures the average
of the squares of the errors-that is, the average squared difference between the
actual and predicted values. The formula is defined as:

.MSE =
1
n

n

i=1

(yi − ŷi)2 (1) 

where .yi is the actual value, .ŷi is the predicted value, and . n is the number o f
observations.

Additionally, Root Mean Squared Error (RMSE) is tracked as a performance 
metric during training. The Root Mean Squared Error (RMSE) is used as a
key evaluation metric to assess the performance of the ANN model. It measures
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the average magnitude of the error between predicted and actual values, and is
defined as:

.RMSE =
1
n

n

i=1

(yi − ŷi)2 (2) 

where . yi represents the actual value, . ŷi is the predicted value, and . n is the total 
number of observations.

Fig. 1. Root Mean Squared Error (RMSE) curve during ANN model training 

As  shown  in  Fig. 1, the RMSE decreased steadily during training, indicating 
effective learning and convergence of the ANN model.

Dropout layers were optionally included during experimentation to explore 
regularization, although they were commented out in the final architecture due 
to acceptable training stability. This configurable and modular ANN architecture 
enables S olaris AI to adapt to various dataset sizes and complexity levels, offering
a scalable solution for accurate solar energy forecasting.

Model Evaluation. After training the Artificial Neural Network (ANN), we 
evaluated its performance on both training and testing datasets. The dataset
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was split in an 80:20 ratio. Predictions were generated for both sets using the 
trained model, and the outputs were inverse-transformed to their original scale
for accurate error computation. We employed three evaluation metrics:

– Mean Squared Error (MSE) – measures the average squared difference 
be tween predicted and actual values.

– Root Mean Squared Error (RMSE) – the square root of MSE, providing
error in the original units.

– Coefficient of Determination (.R2 Score) – indicates how well the pre-
dictions appro ximate the actual values.

On the test set, the model achieved an RMSE of approximately 434.02 , an
MSE of 259.68, and an .R2 score of 0.778. For the training set, the .R2 score was 
0.917, suggesting that the model generalizes well without significant overfitting.

To visualize prediction quality, we generated scatter plots comparing the 
predicted versus actual values for both training and testing datasets (Fig. 2). The 
clustering of points around the diagonal line indicates strong model performance.

Fig. 2. Scatter plots of predicted vs. actual generated power for training (left) and 
testing (right) datasets. 

3.3 Liner Regression Model f or Comparison

Linear Regression is a statistical method used to model relationship between 
a dependent variable or target variable, which in our case is solar power, and 
one or more independent variables, again in our case is weather and irradiance 
features. We use this model to serve as a baseline for solar power prediction
which we will use to compare against our LSTM model which we will train later.
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Model Training. We used our prepared final dataset [8] to train the model. The 
dataset is split into a 75:25 ratio, where 75% of the dataset is used for training 
and 25% of the dataset is used for testing to evaluate model generalization. We 
train our Linear Regression model on the training set using the prepared features.
The model learns the optimal coefficients to minimize the mean squared error
between predicted and actual power values.

Model Evaluation. We evaluate the training model on test dataset. We then 
use metrics such as MSE (Mean Squared Error), RMSE (Root Mean Squared
Error), MAE (Mean Absolute Error), .R2 and Adjusted .R2. Our evaluation met-
rics results are as follows: Mean Square Error is 159.44, Root Mean Square Error 
is 12.62, Mean Absolute Error is 8.56, Median Absolute Error is 6.14, .R2 is 0.57, 
Adjusted .R2 is 0.57. We then visualize the results by plotting the predicted 
vs actual power values as seen in Fig. 3. Finally, the trained Linear Regression 
model is saved for f uture use and comparison with other models.

Fig. 3. Comparison plot of actual vs. predicted solar power values in the Linear Regres-
sion model 

3.4 LSTM Model for T ime-Series Forecasting

We use LSTM to model the sequential nature of solar power generation based 
on historical weather conditions and irradiance data. We use the same set of
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features that were used for Linear Regression. This feature matrix is reshaped 
into a 3D array as required by LSTM, i.e. samples, time steps, features. In our 
case, each sample represents one hour, with a single time step. The dataset is 
split into a 75:25 ratio, where 75% of the dataset is used for training and 25%
of the dataset is used for testing while maintaining the chronological order. The
LSTM model consists of:

1. A LSTM layer with units equal t o the lag value.
2. A Dropout layer to preven t overfitting.
3. A Dense output layer to preve nt overfitting.

We trained two versions of the LSTM model using different lag values: 24 (1 day) 
and 672 (4 weeks). Each input sample consisted of historical weather and irradi-
ance values across the lag window. The LSTM architecture included an LSTM 
layer with a number of units equal to the lag, a dropout layer (0.3–0.33), and 
a final dense output layer. The model was trained using the Adam optimizer
(Adaptive Moment Estimation) to efficiently update model weights and MSE
loss function.

Model Evaluation. After training our LSTM models, the model’s predic-
tions are compared to actual values using the same evaluation metrics as Linear 
Regression, i.e. MSE (Mean Squared Error), RMSE (Root Mean Squared Error),
MAE (Mean Absolute Error), .R2. Our evaluation metrics for training lag 24 are 
as follows: Mean Square Error is 134.53, Root Mean Square Error is 11.59, Mean
Absolute Error is 6.95, Median Absolute Error is 2.54, .R2 is 0.643, Adjusted . R2

is 0.641. Similarly, our evaluation metrics for training lag 672 are as follows: 
Mean Square Error is 130.93, Root Mean Square Error is 11.44, Mean Absolute
Error is 6.64, Median Absolute Error is 2.28, .R2 is 0.653, Adjusted .R2 is 0.641. 
We plot training and validation loss curves to assess model convergence as well 
as visualizing a predicted vs actual power values as seen in Fig. 4.  Moreover,  we  
also visualize the results by plotting the predicted vs actual po wer values for
both lag 24 (Fig. 5) and lag 672 (Fig. 6). 

Fig. 4. RMSE training loss curves for LSTM with lag 24 vs lag 672
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Fig. 5. Comparison plot of actual vs. predicted solar power values in the LSTM Lag 
24 Model 

This transition to LSTM reflects a key evolution in Solaris AI and addresses 
reviewer concerns ab out benchmarking with advanced forecasting models.

3.5 LangChain Framework for Retrieval-Augmented G eneration
(RAG)

LangChain is an open source framework designed to simplify the development 
of applications built by large language mo dels (LLMs) by connecting them with
external data sources and computational logic [9]. In Solaris AI, LangChain 
plays a central role in implementing the Retrieval Augmented Generation (RAG) 
architecture, enabling seamless integration between solar forecasting data, vector
embeddings, and OpenAI’s generative models.

While RAG pipelines are typically applied to unstructured data sources such 
as PDFs and documents, Solaris AI adapts this architecture to work with a 
structured CSV dataset containing historical solar parameters such as irradiance, 
humidity, temperature, and power output. LangChain facilitates t his adaptation
by offering modular components for document loading, text splitting, embedding
generation, vector store management, and query chaining [10]. 

This process begins by preproccesing solar dataset using LangChain’s 
‘TextSplitter’, which breaks the data into smaller, meaningful chunks [11]. These 
chunks are transformed into high-dimensional vector embeddings using OpenAI’s
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Fig. 6. Comparison plot of actual vs. predicted solar power values in the LSTM Lag 
672 Model 

embedding model. The embeddings are stored in ChromaDB, a vector database 
designed for fast semantic retrieval [13]. By structuring complex LLM workflows 
into reusable and modular components, LangChain ensures that Solaris AI’s
RAG system remains both scalable and modular.

Upon receiving a user query, LangChain retrieves the most semantically rel-
evant chunks from ChromaDB and combines them with the original query. This 
context is then passed to the LLM, which generates a response based on real 
data and the ANN mo del’s prediction. This retrieval-based architecture ensures
the system’s reliability by tying each answer to factual, context-specific evidence,
thereby reducing hallucinations.

Figure 7 illustrates the chunking and embedding workflow used in t his RAG
pipeline. Figure 8 displays the working RA G application.

3.6 Cloud Deployment Using AWS

To make the Solaris AI system accessible, scalable, and cost-efficient, the RAG 
based application was deployed using Amazon Web Services (AWS). The deploy-
ment strategy was chosen to support real-time user interaction with the model
through a serverless architecture to ensure flexibility and minimize infrastructure
management overhead [15]. 

The core application is served through a FastAPI framework, which provides 
a lightweight RESTful API interface for submitting user queries and receiving
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Fig. 7. Illustration of the chunking and embedding workflow used in this RAG pipeline. 
Taken from [ 14] 

Fig. 8. Working RAG Application 

generated responses. RESTful API (Representational State Transfer) is a soft-
ware architecture that enables interaction between clients and the application 
over HTTP, m aking the system easily accessible through web interfaces or other
external application [18]. 

FastAPI is a modern, high performance web framework for building APIs 
with Python, based on standard Python type hints. It is known for its speed 
with performance on par with NodeJS and Go, and offers rapid development
cycles- claiming up to 200–300% faster feature implementation compared to tra-
ditional frameworks [17]. In addition, it also provides automatic input validation, 
asynchronous support, and interactive documentation, making it a robust and
scalable choice for deploying AI systems.

This FastAPI application is containerized using Docker to ensure a consistent 
runtime environment across local development, testing, and production. This 
process also helps simplify dependency managemen t and allows the entire RAG
application to be deployed as a portable unit [12]. 

The Docker container is deployed on AWS Lambda using it as a serverless 
model, allowing it to scale automatically based on incoming requests without
the need for a dedicated server [15]. This architecture significantly reduces oper-
ational cost and improves scalability. Based on benchmark tests, the cost of 
running the application is estimated to be less than $2 per 1,000 queries, mak-
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ing it an affordable solution for educational, researc h, or large-scale production
use [16]. 

DynamoDB serves as a back-end NoSQL database, keeping a record of user 
queries along with their responses. This allows easy access for future references, 
audits, or system performance checks. To handle long-running tasks and prevent 
latency in the user-facing A PI, complex queries are handled in the background
by a second asynchronous Lambda function, also known as the Worker function
[15]. This setup ensures smooth performance, ev en under varying computational
loads.

Together, these cloud components form a robust production-ready pipeline 
that connects users to Solaris AI, enabling them to ask questions a nd receive
intelligent data-backed insights on solar power generation.

Figure 9 illustrates the schematic of the system architecture for the RAG/AI 
application deployed on AWS. Figure 10 displays the query list records stored in 
the AWS DynamoDB backend.

Fig. 9. System architecture for the RAG/AI application deployed on AWS. Taken 
from [ 12] 

Fig. 10. Backend AWS DynamoDB Query Lists
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4 Results and Discussion 
4.1 ANN Model P erformance

The Artificial Neural Network (ANN) model was trained on historical meteoro-
logical data, including temperature, irradiance, humidity, and atmospheric pres-
sure, and produced promising results. The model achieved a Ro ot Mean Square
Error (RMSE) of approximately 16.11 and a Mean Squared Error (MSE) of
259.68. Furthermore, the .R2 score was 0.917 on the training set and 0.778 on 
the test set, indicating a strong ability to generalize without significant overfit-
ting.

These results show that the ANN can capture the nonlinear relations between 
the input variables, and it can deliver a reliable solar power output. However, 
the dataset the ANN model was trained on lacked key features such as GHI and 
GTI. Lastly, ANN does not account for temporal dependencies as seen in solar 
irradiance patterns. LSTM is better suited for sequen tial data. It also aligns more
closely with the physical characteristics of solar generation. Hence, we shift our
attention from training our ANN model to developing our LSTM model, which
is better suited for these tasks.

4.2 Long-Short Term Model Performance and i ts Comparison
with Linear Regression

The LSTM model was trained on a richer meteorological dataset, as it contains 
GHI and GTI, and compared with the Linear Regression model, which was also 
trained on the same dataset. The Linear Regression mo del serves as a baseline
performance for comparison purposes. The results of the evaluation are shown
in Table 1. 

Table 1. Comparison of Evaluation Metrics for Linear Regression and LSTM Models 
in Solar Energy Forecasting 

Algorithm Lag Dropout Epochs Batch Size MSE RMSE (Power Gen). R2

LSTM 672 0.33 10 12 130.93 11.44 0.653 
LSTM 24 0.30 10 12 134.53 11.60 0.643 
Linear Regression N/A N/A N/A N/A 159.44 12.63 0.570 

From the comparison, we can see that LSTM significantly outperforms the 
linear regression baseline in every single metric. From the LSTM configurations, 
a lag of 672 shows better performance compared to a lag of 24. This indicates 
that longer historical patterns play an important role in solar energy forecasting. 
Moreover, dropout values around 0.3 seem to be effective in preventing overfitting
and also effective in maintaining generalization with no signs of major perfor-
mance trade-offs. Lastly, LSTM’s higher .R2 indicates the model explains more 
variance in the data which is an inherent nature of weather and solar energy.



Solaris AI: Generative AI for Solar Forecasting 29

However, Table 2 shows the comparison between the performance of ANN
and LSTM.

Table 2. Comparison of Evaluation Metrics for ANN Model and LSTM (Lag 672) 
Model in Solar Energy Forecasting 

Algorithm MSE RMSE. R2

LSTM (lag 672) 130.93 11.44 0.653 
ANN 259.68 16.11 0.778 

Despite LSTM having a marginally lower .R2 than the ANN model, the ANN 
model did include critical features such as GHI and GTI. The LSTM model, 
however, was trained on a richer more physically meaningful feature set. More-
over, the LSTM model s ignificantly outperformed the ANN model in RMSE and
MSE, indicating better real world forecasting accuracy and consistency.

4.3 Generative AI with RA G Integration

The Retrieval-Augmented Generation (RAG) pipeline was developed using 
LangChain to integrate OpenAI’s large language model (LLM) with both the 
LSTM model and the solar dataset. This setup enabled the system to answer 
natural-language questions such as “Why was solar output low yesterday?” by
retrieving relevant data from a ChromaDB vector database and combining it
with the model predictions.

This architecture improved explainability and factual accuracy by confining 
the response to the data instead of on the model knowledge alone. This reduces 
hallucination and creates more transparency and making it more reliable and
convenient for the user.

4.4 Cloud Deployment and System Scalability

The application pipeline was deployed using FastAPI for seamless API inter-
actions and Docker for reliable containerization. It runs serverlessly on AWS 
Lambda, enabling automatic scaling without requiring back-end management. 
DynamoDB stores query-response data, while asynchronous Lambda functions
ensure fast and efficient processing, even under heavy traffic.

This architecture ensures that Solaris AI is not only technically robust but 
also scalable, modular, and cost-effective. The estimated cost via Amazon Cost
Calculator is less than $2 per 1,000 queries, which is very affordable.

5 Conclusion and Future Work 

Accurate prediction of solar power is vital for integrating renewable energy into 
grids and achieving a low-carbon future. Forecasting models serve as a crucial
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tool in stabilizing grid operations, optimizing energy resource planning, and sup-
porting data-driven policy decisions. In this research, we developed Solaris AI, 
a solar forecasting system that initially leveraged an Artificial Neural Network 
(ANN) model and was later enhanced with a Long Short-Term Memory (LSTM) 
model to improve time-series prediction accuracy. The system combines deep 
learning-based forecasting with the explainability and accessibility of a Retrieval-
Augmented Generation (RAG) pipeline. Our approach integrates a deep learning 
forecasting model with OpenAI’s language models via LangChain, allowing users
to interact with both datasets and real-time ANN predictions through a conver-
sational interface. The system is deployed using FastAPI, Docker, and AWS
Lambda for scalable, serverless access, and includes DynamoDB for persistent
query logging.

Our final output is a chatbot-like interface that enables users to ask intu-
itive, natural-language questions such as “How much power was generated this 
week?” or Why was output low yesterday?” and receive context-aware, data-
backed answ ers. This makes Solaris AI not only a forecasting tool but also a
transparent, multilingual assistant for solar energy systems.

Future work includes integrating real-time data from sensors or weather APIs 
to improve the accuracy and responsiveness of predictions. This would allow 
Solaris Ai to adapt to environmental changes and provide live forecasting capa-
bilities. Further enhancements could include support for voice-based queries, 
making interactions even more natural and convenient. The system could also 
expand to cover other renewable energy sources, lik e wind and hybrid platforms.
In addition, the use of video-based generative AI could enable automatic gen-
eration of visual summaries or forecast explanations, making the system more
accessible and intuitive for a wider range of users.

References 

1. Rajasundrapandiyan, T., Kumaresan, K., Murugan, S., Subathra, M.S.P., Sivaku-
mar, M.: Solar energy forecasting using machine learning and deep learn-
ing techniques. Int. J. Num. Meth. Eng. (2023). https://www.researchgate.net/ 
publication/378395432. Accessed 15 May 2025 

2. EIA projects 48% increase in world energy consumption by 2040 (2016). https:// 
www.eia.gov/todayinenergy/detail.php?id=26212. Accessed 27 Mar 2025 

3. Erduman, A.: A smart short-term solar power output prediction by artificial neural 
network. Electr. Eng. 102, 1441–1449 (2020). https://doi.org/10.1007/s00202-020-
00971-2 

4. Salman, D., Kusaf, M., Direkoglu, C.: Hybrid deep learning models for time series 
forecasting of solar power. Neural Comput. Appl. (2024). https://doi.org/10.1007/ 
s00521-024-09558-5 

5. Essam, Y., et al.: Investigating photovoltaic solar power output forecasting using 
machine learning algorithms. Informa UK Limited, Taylor and Francis Group 
(2022). https://doi.org/10.1080/19942060.2022.2126528 

6. Qiu, Z., et al.: EF-LLM: energy forecasting LLM with AI-assisted automa-
tion, enhanced sparse prediction, hallucination detection. arXiv preprint

https://www.researchgate.net/publication/378395432
https://www.researchgate.net/publication/378395432
https://www.researchgate.net/publication/378395432
https://www.researchgate.net/publication/378395432
https://www.researchgate.net/publication/378395432
https://www.researchgate.net/publication/378395432
https://www.eia.gov/todayinenergy/detail.php?id=26212
https://www.eia.gov/todayinenergy/detail.php?id=26212
https://www.eia.gov/todayinenergy/detail.php?id=26212
https://www.eia.gov/todayinenergy/detail.php?id=26212
https://www.eia.gov/todayinenergy/detail.php?id=26212
https://www.eia.gov/todayinenergy/detail.php?id=26212
https://www.eia.gov/todayinenergy/detail.php?id=26212
https://www.eia.gov/todayinenergy/detail.php?id=26212
https://doi.org/10.1007/s00202-020-00971-2
https://doi.org/10.1007/s00202-020-00971-2
https://doi.org/10.1007/s00202-020-00971-2
https://doi.org/10.1007/s00202-020-00971-2
https://doi.org/10.1007/s00202-020-00971-2
https://doi.org/10.1007/s00202-020-00971-2
https://doi.org/10.1007/s00202-020-00971-2
https://doi.org/10.1007/s00202-020-00971-2
https://doi.org/10.1007/s00202-020-00971-2
https://doi.org/10.1007/s00521-024-09558-5
https://doi.org/10.1007/s00521-024-09558-5
https://doi.org/10.1007/s00521-024-09558-5
https://doi.org/10.1007/s00521-024-09558-5
https://doi.org/10.1007/s00521-024-09558-5
https://doi.org/10.1007/s00521-024-09558-5
https://doi.org/10.1007/s00521-024-09558-5
https://doi.org/10.1007/s00521-024-09558-5
https://doi.org/10.1007/s00521-024-09558-5
https://doi.org/10.1080/19942060.2022.2126528
https://doi.org/10.1080/19942060.2022.2126528
https://doi.org/10.1080/19942060.2022.2126528
https://doi.org/10.1080/19942060.2022.2126528
https://doi.org/10.1080/19942060.2022.2126528
https://doi.org/10.1080/19942060.2022.2126528
https://doi.org/10.1080/19942060.2022.2126528
https://doi.org/10.1080/19942060.2022.2126528


Solaris AI: Generative AI for Solar Forecasting 31

arXiv:2411.00852v2 (2024). https://arxiv.org/pdf/2411.00852v2. Accessed 15 May 
2025 

7. Gupta, A.: Forecasting the power generated by a solar plant. GitHub Repository 
(2023). https://github.com/anantgupta129/Solar-Power-Generation-Forecasting. 
Accessed 15 May 2025 

8. Viraat, I.: Short-term power forecasting. Github repository (2020). https://github. 
com/shubhamchouksey/Power-Prediction-LSTM/tree/master/Data. Accessed 01 
Jun 2025 

9. Amazon Web Services: What is LangChain? (2025). https://aws.amazon.com/ 
what-is/langchain/. Accessed 15 May 2025 

10. LangChain: LangChain conceptual guide (2025). https://github.com/langchain-
ai/langchain/blob/master/docs/docs/concepts. Accessed 15 May 2025 

11. LangChain: Text splitters, LangChain (2025). https://python.langchain.com/ 
docs/concepts/text_splitters/. Accessed 15 May 2025 

12. Pixegami: Deploy RAG/AI app to AWS (2024). https://github.com/pixegami/ 
deploy-rag-to-aws. Accessed 15 May 2025 

13. Chroma: Chroma documentation: Introduction (2025). https://docs.trychroma. 
com/docs/overview/introduction. Accessed 15 Apr 2025 

14. Garza, E.: Hands-on large language models with LangChain – Part 2: Building a 
robust document search engine (2023). https://ernestodotnet.medium.com/part-
2-hands-on-large-language-models-with-langchain-building-a-robust-document-
search-engine-95396195326. Accessed 15 May 2025 

15. Amazon Web Services: AWS documentation (2025). https://docs.aws.amazon.com. 
Accessed 21 Apr 2025 

16. Amazon Web Services: AWS pricing calculator (2025). https://aws.amazon.com/ 
pricing/. Accessed 29 Apr 2025 

17. Ramírez, S.: FastAPI documentation (2025). https://fastapi.tiangolo.com/. 
Accessed 02 May 2025 

18. Amazon Web Services: What is a RESTful API? (2025). https://aws.amazon.com/ 
what-is/restful-api/. Accessed 02 May 2025

http://arxiv.org/abs/2411.00852v2
https://arxiv.org/pdf/2411.00852v2
https://arxiv.org/pdf/2411.00852v2
https://arxiv.org/pdf/2411.00852v2
https://arxiv.org/pdf/2411.00852v2
https://arxiv.org/pdf/2411.00852v2
https://arxiv.org/pdf/2411.00852v2
https://github.com/anantgupta129/Solar-Power-Generation-Forecasting
https://github.com/anantgupta129/Solar-Power-Generation-Forecasting
https://github.com/anantgupta129/Solar-Power-Generation-Forecasting
https://github.com/anantgupta129/Solar-Power-Generation-Forecasting
https://github.com/anantgupta129/Solar-Power-Generation-Forecasting
https://github.com/anantgupta129/Solar-Power-Generation-Forecasting
https://github.com/anantgupta129/Solar-Power-Generation-Forecasting
https://github.com/anantgupta129/Solar-Power-Generation-Forecasting
https://github.com/shubhamchouksey/Power-Prediction-LSTM/tree/master/Data
https://github.com/shubhamchouksey/Power-Prediction-LSTM/tree/master/Data
https://github.com/shubhamchouksey/Power-Prediction-LSTM/tree/master/Data
https://github.com/shubhamchouksey/Power-Prediction-LSTM/tree/master/Data
https://github.com/shubhamchouksey/Power-Prediction-LSTM/tree/master/Data
https://github.com/shubhamchouksey/Power-Prediction-LSTM/tree/master/Data
https://github.com/shubhamchouksey/Power-Prediction-LSTM/tree/master/Data
https://github.com/shubhamchouksey/Power-Prediction-LSTM/tree/master/Data
https://github.com/shubhamchouksey/Power-Prediction-LSTM/tree/master/Data
https://github.com/shubhamchouksey/Power-Prediction-LSTM/tree/master/Data
https://aws.amazon.com/what-is/langchain/
https://aws.amazon.com/what-is/langchain/
https://aws.amazon.com/what-is/langchain/
https://aws.amazon.com/what-is/langchain/
https://aws.amazon.com/what-is/langchain/
https://aws.amazon.com/what-is/langchain/
https://aws.amazon.com/what-is/langchain/
https://github.com/langchain-ai/langchain/blob/master/docs/docs/concepts
https://github.com/langchain-ai/langchain/blob/master/docs/docs/concepts
https://github.com/langchain-ai/langchain/blob/master/docs/docs/concepts
https://github.com/langchain-ai/langchain/blob/master/docs/docs/concepts
https://github.com/langchain-ai/langchain/blob/master/docs/docs/concepts
https://github.com/langchain-ai/langchain/blob/master/docs/docs/concepts
https://github.com/langchain-ai/langchain/blob/master/docs/docs/concepts
https://github.com/langchain-ai/langchain/blob/master/docs/docs/concepts
https://github.com/langchain-ai/langchain/blob/master/docs/docs/concepts
https://github.com/langchain-ai/langchain/blob/master/docs/docs/concepts
https://github.com/langchain-ai/langchain/blob/master/docs/docs/concepts
https://python.langchain.com/docs/concepts/text_splitters/
https://python.langchain.com/docs/concepts/text_splitters/
https://python.langchain.com/docs/concepts/text_splitters/
https://python.langchain.com/docs/concepts/text_splitters/
https://python.langchain.com/docs/concepts/text_splitters/
https://python.langchain.com/docs/concepts/text_splitters/
https://python.langchain.com/docs/concepts/text_splitters/
https://python.langchain.com/docs/concepts/text_splitters/
https://github.com/pixegami/deploy-rag-to-aws
https://github.com/pixegami/deploy-rag-to-aws
https://github.com/pixegami/deploy-rag-to-aws
https://github.com/pixegami/deploy-rag-to-aws
https://github.com/pixegami/deploy-rag-to-aws
https://github.com/pixegami/deploy-rag-to-aws
https://github.com/pixegami/deploy-rag-to-aws
https://github.com/pixegami/deploy-rag-to-aws
https://docs.trychroma.com/docs/overview/introduction
https://docs.trychroma.com/docs/overview/introduction
https://docs.trychroma.com/docs/overview/introduction
https://docs.trychroma.com/docs/overview/introduction
https://docs.trychroma.com/docs/overview/introduction
https://docs.trychroma.com/docs/overview/introduction
https://docs.trychroma.com/docs/overview/introduction
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://ernestodotnet.medium.com/part-2-hands-on-large-language-models-with-langchain-building-a-robust-document-search-engine-95396195326
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://docs.aws.amazon.com
https://aws.amazon.com/pricing/
https://aws.amazon.com/pricing/
https://aws.amazon.com/pricing/
https://aws.amazon.com/pricing/
https://aws.amazon.com/pricing/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://aws.amazon.com/what-is/restful-api/
https://aws.amazon.com/what-is/restful-api/
https://aws.amazon.com/what-is/restful-api/
https://aws.amazon.com/what-is/restful-api/
https://aws.amazon.com/what-is/restful-api/
https://aws.amazon.com/what-is/restful-api/
https://aws.amazon.com/what-is/restful-api/
https://aws.amazon.com/what-is/restful-api/


A Tool for Synthesizing and Implementing 
Medium Voltage Load Profiles 

Hendrik Plompen1,2 , Ranier Alexsander Arruda Moura2(B) , 
Khawaja Khalid Mehmood2 , Anne van der Molen2 , Peter van 

der Wielen2 , and Phuong Hong Nguyen2

1 TenneT, 6812 Arnhem, AR, The Netherlands 
2 Eindhoven University of Technology, 5612 Eindhoven, AZ, The Netherlands

r.a.a.m.arruda.moura@tue.nl 

Abstract. To support energy planning and grid investigations, this 
paper presents an open source tool to generate and integrate realistic syn-
thetic load profiles (SLPs) into power system software. The tool assigns 
daily SLPs to all loads within a network and is compatible with Vision 
Network Analysis and OpenDSS. It features a Graphical User Inter-
face (GUI) and employs the probabilistic Multivariate Elliptical Copula 
(MEC) method, using active power consumption data as input. Addi-
tional functionalities include preprocessing, clustering, and validation. 
Preprocessing handles outlier and duplicate removal via the interquar-
tile range (IQR) and imputes missing values using linear interpolation 
or k-Nearest Neighbors (kNN). Clustering groups data by month and 
day type, and later by K-Means to identify different consumer types. A
selected cluster serves as input to the MEC model, which can be con-
ditioned on annual consumption, mean load, and peak load. Validation
metrics include Mean Absolute Percentage Error (MAPE), Root Mean
Square Error (RMSE), and Jensen-Shannon Divergence (JS-D). In a case
study using real medium voltage (MV) load data from a Dutch city, the
tool achieved an average MAPE of .0.56% for industrial and .0.51% for 
aggregated residential consumers. It also successfully assigned SLPs, per-
formed load flow calculations, and e xtracted congestion-related results in
both software environments.

Keywords: Load profile · Synthetic data generation · Power system 
soft ware · Congestion · Preprocessing

1 Introduction 

The electricity grid has been one of the primary energy carriers in society for 
many years, and its imp ortance is expected to grow even further in the future
[14]. This grid supplies power to a diverse range of users, including households, 
businesses, and industries. Grid operators are responsible for ensuring that the 
network remains safe, reliable, stable, and efficient at all times. This is achieved
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through careful planning, development, design, and management of the entire
grid infrastructure.

However, challenges are arising due to the limited capacity of the exist-
ing grid. Operators are increasingly facing congestion issues multiple times a 
day, caused by high electricity demand and the penetration of renewable energy 
sources (RES). The variable and decentralized nature of them adds complexity
to grid management and poses significant obstacles for network operation [19]. 

One way to support energy planners and grid operators is by generating SLPs. 
These synthetic yet reliable profiles aim to replicate the statistical properties 
and correlation structures of real-world load profiles (LPs), making them useful
for power system analysis and decision-making [1]. In other words, they can 
help indicate whether different scenarios may cause congestion in a specific grid
topology.

1.1 Related Works 

In [ 8], a top-down probabilistic approach based on the Multivariate Elliptical 
Copula (MEC) is proposed to generate synthetic residential data. This method 
is capable of capturing the statistical properties of smart meter measurement 
datasets, considering the autocorrelation of their correspondent time series (TS) 
and their probability density functions (PDFs) a cross different seasons. In addi-
tion, conditioned variables are incorporated into the modeling process, such as
annual energy consumption and daily weather profiles.

In [ 1], the MEC technique without conditioning was also applied to medium-
voltage (MV) loads, focusing on industrial and aggregated residential profiles 
collected at the transformer level in a Dutch city. The synthesized scenarios 
were evaluated considering analyses of Spearman’s rank correlation coefficients, 
average power behaviors, and histogram distributions. Despite this, numerical
issues emerged during the simulations due to discrepancies between the PDFs.
A similar work was done in [2], but specifically for transformer loads.

Since the synchronization of residential consumers can potentially lead to 
overloads, Gaussian Copula (GC) modeling was employed in [11] to capture this 
synchronization by analyzing the time-varying dependence structure between 
individual demands, specifically using the correlation parameter as an indicator.
A GC was also used in [9] to model uncertainties in home energy management, 
including load parameters, outdoor temperatures, and energy prices, enabling
the generation of correlated scenarios.

In [ 12] a SLP generator tool is combined with the power system software 
OpenDSS to automatically assign profiles to network components. This was done 
to investigate the effects that the profiles have o n a modeled network. However,
it only involves SLP generation for electric vehicles (EV).

1.2 Contribution 

This research improves the use of SLPs in distribution network operations in two 
ways: by enhancing synthesizing techniques and improving their implementation



34 H. Plompen et al.

in power system software. A tool was developed to generate and assign daily SLPs 
to network loads in Vision Netwo rk Analysis and OpenDSS. It uses the top-down
MEC method from [8] and includes preprocessing, clustering, and validation 
features. A case study tested the functionality and performance of t he tool.
Furthermore, the contributions of this work are:

– Creation of an open-source tool that is able to com bine both generation and
implementation as one

– The ability of the tool to implement LPs into a network within v arious power
system software

– The possibility to only use the generation part of the tool, which compared 
to other open-source stand-alone generators is a ble to generate realistic SLPs
based solely on smart meter data.

The remainder of this paper is organized as follows: In Sect. 2,  the  method-
ology employed is presented. Section 3 discusses how the complete tool is oper-
ated. The case study is presented in Sect. 4, with the obtained results presented
in Sect. 5. These results are discussed in Sect. 6 and Sect. 7 will conclude the 
investigation. A step by step tool guide is also provided in Appendix A. 

2 Methods 

The following subsections discuss the various methods applied throughout the 
entire process of the tool. A complete overview of this process and its steps is
further discussed in detail in Sect. 3. 

2.1 Preprocessing 

The first step in generating SLPs from historical data is preprocessing, which 
handles issues such as missing values, duplicates, and outliers. This study applies 
either linear in terpolation or the kNN algorithm for imputing missing data, and
uses the IQR method for detecting outliers.

Linear interpolation estimates missing values by assuming a linear relation-
ship between neighboring data points within the same TS, while the k NN algo-
rithm is based on similarities of neighboring values [20]. This similarity makes 
use of the distance between the missing and the neighboring v alues and for this
the Euclidian distance is used according to:

.d(x, y) =
n

i=1

(xi − yi)2 (1) 

where . n is the number of dimensions of the data, . x the missing value, . y the 
neighbor and using .i = 1, ..., n. Depending on the number of neighbors selected, 
it finds this number of neighbors which have the smallest distance. The missing
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value is then imputed based on the weighted mean of these neighbors as used in
[21, 27] follo wing

.xi =
K
k=1 wkvk
K
k=1 wk

(2) 

where .K is the number of neighbors selected, .vk is the nearest neighbor, . k =
1, ...,K and .wk is the weight factor that can be written as

.wk =
1

d(x, y)
. (3) 

The chosen value for .K influences the imputed value the most. Various studies 
discuss possible optimal values for . K,  such as .K = 1 [ 15], .K = 2 [ 3]  or  e  ven
.K ≈ √

N where .N is the total number of neighbors for that measurement [7]. 
For the tool the value of .K can  be  set  by  t  he user.

Outliers are particularly high or low values compared to the rest of the dataset 
that can be caused by an error. However, they can be just a correct measurement, 
and thu s are not required to be removed. The detection of these outliers follows
the IQR method [10] as cited in [25]. This method considers . x to be an outlier if

.x < (Q1 − 1.5 · IQR) (4) 

or 
.x > (Q3 + 1.5 · IQR) (5) 

where .Q3 is the third quartile or 75th percentile, .Q1 the first quartile or 25th 
percentile, the factor . f is set to 1.5, and IQR i s calculated using

.IQR = Q3 − Q1. (6) 

The IQR uses a breakdown point of 25% for the range of all values. However 
this can be set to a different point by the user. When outliers are remov ed they
are then treated as missing values and imputed following one of the methods
previously discussed.

2.2 Clustering 

Weather variables such as irradiance and temperature affect residential electric-
ity demand, creating different LPs between seasons. Since Dutch weather often 
varies, clustering is done by month rather than by season. Data are also split 
into weekdays and weekends, and further clustered to group similar load pat-
terns. This helps identify consumer types and enables targeted modeling and
simulations.

The final clustering process follows the K-means algorithm [18]. This method 
focuses on minimizing the distance between all data points in a cluster and the 
center point in that cluster, called the centroid. These data points are then 
assigned to the cluster where this distance to the centroid is the smallest. By
first initializing the centroids, the distance for all data points can be calculated.
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Then the centroids are recomputed, and the distances are recalculated for these 
new centroids. This continues until the centroids stop changing. The objective
function that the K-means algorithm tries to optimize can be defined as

.E =
c

i=1 x∈Ci

x − ui
2 (7) 

where . c is the number of different clusters, and .ui the centroid of cluster . Ci. 
To find the optimal number of clusters, many researchers use internal valida-

tion criteria which are able to validate the effectiveness of clusters, the compact-
ness of each cluster and the distance between each cluster [5]. In this research 
the Davies-Bouldin index (DBI) is used which compares each different cluster
with another [13]. From this comparison an index value follows and the lower 
this index value the less similar the clusters are to each other. Computing the 
DBI for different numbers of clusters results in finding the optimal number of
clusters. The DBI can be written as

.DBI =
1
N

N

i=1

max
i=j

Si + Sj

Mi,j
(8) 

where N is the number of clusters, .Si and .Sj are the dispersion’s of clusters . i
and . j respectively and .Mi,j the distance between vectors which are chosen as 
characteristic of clusters . i and . j [ 6]. 

2.3 Multivariate Elliptical Copulas 

A copula is a multivariate distribution function, where its marginal distribu-
tion functions are uniform in the interval (0, 1) [22]. This function was formu-
lated according to Sklar’s Theorem [26], where a multivariate join t distribution
.F (x1, ..., xd) is represented using its marginal distribution functions .Fi(xi) and 
a copula .C(·) for .i = 1, ..., d is illustrated b elow:

.F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (9) 

Since this function models the correlation patterns between the marginal
uniform random variables .Ui = Fi(Xi), the previous equation is rewritten a s it
follows:

.F (x1, ..., xd) = C(u1, ..., ud) (10) 

The MEC model proposed in [8] uses a set of elliptical copulas consist-
ing of both the Multivariate Gaussian Copula (MGC) and the Multivariate t-
Distribution Copula (MTC), which capture the dependency structure between 
random variables. Each random variable has a different marginal distribution 
function. Furthermore, the copulas can assign different dependence values to all
pairs of random variables. Both copulas are used to model a LP and using the
BIC are compared to find the model that better describes the input dataset.
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2.4 Validation 

To validate the generated SLP dataset, multiple metrics are employed that com-
pare it with the original smart meter input dataset. To give insight in the mean 
error both the RMSE a nd MAPE are used. However, RMSE is generally con-
sidered to be more sensitive to outliers than MAPE [4]. The RMSE is defined
as

.RMSE =
T
t=1(yt − ŷt)2

T
(11) 

where .yt is the measured active power consumption and .ŷt is the synthetically 
generated active power consumption. Based on the same v ariables the MAPE
can be written as

.MAPE = 100
1
T

T

t=1

yt − ŷt
yt

(12) 

To give insight in the statistical parameters the Jensen-Shannon divergence 
(JS-D) is used, which compares the probability distributions and is based on the 
Kullback-Leibler divergence (KL-D) but will always have a finite value [17, 23]. 
It can be w ritten as

.DJS(P ||Q) =
DKL(P ||P+Q

2 ) +DKL(Q||P+Q
2 )

2
. (13) 

where .DKL is the KL-D which is defined as

.DKL(P ||Q) =
x∈X

P (x) log
P (x)
Q(x)

(14) 

where .P (x) is the probability distribution of the measured data and .Q(x) is the 
probability distribution of the synthetically generated data [16]. 

3 Tool Design 

The  tool,  whose  code  is  available in [24], is a Python 3.11.4 script with a GUI, 
compatible with Vision Network Analysis and OpenDSS. Its main purpose is to 
generate and implement SLPs, with additional features such as preprocessing, 
clustering, and validation. Each feature can run independently, except for gen-
eration, which requires prior clustering and is followed by validation to ensure
quality. All features, except validation, can handle two inputs at once.

In Fig. 1 the core algorithm can be seen where each row represents a certain 
environment. From top to bottom, these are: the user, Python, Excel, and one
of the power system analysis software previously mentioned.

To begin the process, an initialization is started in which the features required 
by the user are selected. When the implementation feature is selected, the tool 
also requires which software is used for implementation and some network param-
eters. These parameters consist of a list of loads including both their name and
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Fig. 1. Flowchart of core algorithm

type (normal or transformer load). Based on this list, the tool knows how many 
SLPs to generate. When multiple types are present, it is possible to assign dif-
ferent SLPs to each type.

Next, we have the SLP generation process that consists of preprocessing, 
clustering, generation, and validation. For this step, an Excel file is required 
which contains the active power consumption measurements. In addition, some
feature parameters are required from the user.

When this process is successful, an SLP dataset should be generated, which 
acts as the input for the implementation pro cess. Instead, it is also possible to
use a custom dataset for this part.

Fig. 2. Flowchart of prepro cessing stage

Figure 2 outlines the preprocessing steps applied to the raw measurement 
data. First, empty entries and duplicate timestamps are removed. If preprocess-
ing is selected, zero-only measurements can be included or removed. A threshold
for missing data (as a percentage of the total) is set, beyond which measurements
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are discarded; the rest are imputed using a method from Sect. 2.1. Outliers can 
then be detected, removed, and imputed again. The final data can be visualized 
as a daily load profile with standard deviation or a histogram with kernel density
estimation, and exported to CSV or Excel.

Fig. 3. Flowchart of clustering stage

In Fig. 3 the steps for the clustering process are presented. Clustering is 
done per month and day type (weekday or weekend), with the extra option to 
group months together. When these clustering steps are performed, the following 
optional step is the removal of zero measurements. The next clustering step is 
applying the K-means algorithm and is done by defining a minimum and maxi-
mum number of clusters. This minimum should be at least 2 to work properly. 
The tool then tries to cluster the data in this range of number of clusters set 
by the user. When the algorithm is successful, it results in a list containing the
optimal number of clusters. For each of these clusters, the DBI and the number
of measurements are presented. The final clustering step is to choose one of these
clusters to be used for generation. Like the preprocessing feature, visualization
and the possibility to export data is provided.

Fig. 4. Flowchart of synthesizing stage
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Figure 4 depicts the steps taken in the generation process. Only in this feature 
it is possible to generate two separate scenarios from the same input data. This 
provides the option to perceive the influence the conditioned MEC model can 
have on the data, by comparing a conditioned scenario with an unconditioned 
scenario. The different conditions that can be selected are annual consumption, 
mean load, and peak load. For each condition a range is provided, based on 
the minimum and maximum values of this condition coming from the input 
data, and from this a value can be set for it by the user. The last step before
generation is to set the desired number of generated SLPs. The MEC model
is incorporated into the script by using the EllipticalCopula module from the
multicopula package developed in [8]. 

If the generation is successful, the tool will provide the success rate (SR), 
MAPE, RMSE and JS-D for the generated SLPs. This SR comes from the fact 
that the EllipticalCopula module sometimes generates negative infinite values
at certain time indices. It is calculated using

.SR = 100 − ((
D−∞
Dtot

) · 100) (15) 

where .D−∞ is the number of negative infinite values in the synthetic dataset
and .Dtot is the total number of data points in the synthetic dataset. All SLPs 
that contain exclusively these infinite negative values are subsequently removed 
from the generated dataset. An y remaining negative infinite values are imputed
using linear interpolation as previously discussed in Sect. 2.1. Section 6 further 
discusses why such values might be generated. Finally, there is the option to go 
back and choose a different cluster, in case the resulting SR and validation are 
not satisfactory. However, when the generated data are deemed sufficient, the 
generation process is concluded by providing visualization where the resulting 
SLPs can be compared with the cluster input LPs. Both plots showing the mean
value or the peak value at each time instance can be compared.

Fig. 5. Flowchart of validating stage

Both MAPE and RMSE are applied to the mean daily LP and the mean
daily SLP, as seen in Fig. 5. For the JS-D, the probability distribution of both 
the input dataset and the generated synthetic dataset are required. Furthermore, 
they should be for the same random variable; however, this is not the case when 
dealing with two different datasets containing a wide variety of differing values.
By constructing a histogram for both datasets that enclose the same range and



A Tool for Synthesizing and Implementing Medium Voltage Load Profiles 41

use the same number of bins, both distributions can still be compared with each 
other. In this way, the number of values in a certain bin, and thus the probability,
can still be compared between distributions.

For the generated SLPs to be implemented in Vision or OpenDSS, a number 
of steps are required. First, from the network file of the network chosen for imple-
mentation a list of all the loads needs to be extracted. This list should contain 
all the exact names for each load and when using Vision it should also contain 
which type of load it is, either normal or transformer load. When a network 
consists of two types of load in Vision, it is possible to assign different SLPs 
to each type by making use of the option to process two inputs simultaneously 
throughout the tools algorithm. Based on the list of loads, the tool knows how 
many SLPs are required and will sample these randomly from the generated SLP
dataset. Each SLP is then assigned to one of the loads, and when this is done,
a load flow simulation is performed. As a final step, the congestion results are
extracted from the load flow results which entail the load rate for all time steps
for each line, cable, or transformer that has a load rate above 100.% for at least 
one of the time steps. More details of the tool can be found in Appendix A. 

4 Case Study 

To assess the impact of user defined parameters, multiple case studies were 
conducted using a base case for comparison. This approach helps to analyze how 
each parameter influences modeling and validation. Adjustable settings include 
the imputation method, number of neighbors for k NN, outlier breakdown point
(OBP), clustering configuration, treatment of zero measurements, number of
generated SLPs, condition modeling, and the IQR factor . f . Section 6 provides 
recommendations based on these results.

The data used in this work comes from an industrial area in the Dutch city 
of Dordrecht. It contains a large number of logistics centers, but also numerous 
residential buildings. In total, active power measurements were obtained for 99 
industrial and 96 residential consumers, recorded over an entire year with one 
hour resolution. Both datasets were used as input for the tool. T he network of
this area was also used for the implementation process and subsequent load flow
simulation. This was done to see the effects conditioning can have on a network
and on congestion.

For the base case, the parameter inputs were set as follows: no imputation 
method was selected (as both datasets do not contain missing values), outlier 
detection was not utilized, zero measurements were not removed, no K-means 
clustering was applied, the desired number of SLPs was set to the same number 
of LPs used as input for t he generation, and no conditioning was applied. For
all cases, the modeling was done for all four seasons separately and for both
weekdays and weekends, meaning clustering by season and day type.

All parameters used in the tool are part of the preprocessing, clustering, or 
generation process. For preprocessing, these include the OBP, the IQR factor
. f , and the imputation method, which varied between linear interpolation and
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kNN with different . k values. Clustering parameters include whether zero mea-
surements were included and the range of clusters tested. The generation process 
involved setting the desired number of SLPs. For each case study, one of these 
parameters was modified to test its impact compared to the base case. OBP
values of .1%, .10%, and the default .25% were examined. The IQR factor . f was 
tested at values .1.5, . 3,  and . 10. Imputation methods included linear interpola-
tion and kNN with .K values o f . 1, . 2, . 5, . 10,  and . 94, which the latter is based on
the .

√
N rule, where .N = 8760 (.24 × 365). The number of SLPs t ested ranged

from .100 to .10000 and included a case where it matched the input size. Some 
clustering cases included zero m easurements, and the cluster range tested went
from . 2 to . 20. 

The final adjustable parameters in the generation process are the conditioning 
settings, for which two setpoints per condition were tested: one representing 
the mean of the valid range and the other representing the maximum. For the
AEC condition, the industrial setpoints were .1278.77 GW and .2550.00 GW, and 
the residential setpoints were .667.09 GW and .1330.00 GW, respectively. For 
the mean load condition, values of .0.26 GW and .0.50 GW were tested for the 
industrial case, and .0.10 GW and .0.20 GW for the residential case. Similarly, 
the peak load condition used .0.49 GW and .0.90 GW for industrial, and .0.17 GW 
and .0.30 GW for residential. In all scenarios, the same value level, either mean or 
maximum, was applied t o both industrial and residential sectors simultaneously.

5 Results 

Figures 6 and 7 show the input datasets: mean LPs and PDFs, resp ectively.
Tables 1 and 2 present base case modeling and validation results for weekdays 
and weekends. The value .N refers to the total number of input days (see Fig. 5). 
Tabl e 3 reports the number and percentage of outliers detected at eac h break-
down point. Figure 8 displays the DBI for the tested cluster range, while Fig. 9 
compares mean LPs of clustered vs. original inputs. Table 4 summarizes the c on-

Fig. 6. Mean LPs for both weekdays and weekends for each season of industrial (left) 
and aggregated residential (right) data, depicting standard deviation as error bar
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Fig. 7. Histogram for both weekdays and weekends for each season of industrial (left) 
and aggregated residen tial (right) data, including the kernel density estimation

Table 1. Base case generation and validation results for both industrial and residen-
tial for the entire year regarding weekdays (W =winter, SP= spring, SU= summer,
F = fall)

Industrial Residential 
Season N  [day  s] SR [%] MAPE [%] RMSE JS-D N  [day  s] SR [%] MAPE [%] RMSE JS-D 
W 6336 81.26 11.21 .9.0 × 10−3

.4.3 × 10−3 6144 98.43 0.88 .6.0 × 10−4
. 1.0 × 10−4

SP 6534 78.56 7.42 .5.1 × 10−3
.2.8 × 10−3 6336 93.62 0.70 .3.0 × 10−4

. 1.0 × 10−4

SU 6534 77.30 6.00 .4.2 × 10−3
.1.5 × 10−3 6336 92.93 1.20 .4.0 × 10−4

. 2.0 × 10−4

F 6435 83.95 5.76 .5.0 × 10−3
.1.2 × 10−3 6240 97.46 0.62 .3.0 × 10−4

. 1.0 × 10−4

Table 2. Base case generation and validation results for both industrial and residen-
tial for the entire year regarding weekends (W= winter, SP= spring, SU= summer,
F = fall)

Industrial Residential 
Season N  [day  s] SR [%] MAPE [%] RMSE JS-D N  [day  s] SR [%] MAPE [%] RMSE JS-D 
W 2574 80.99 11.11 .5.0 × 10−3

.2.7 × 10−3 2496 97.49 1.67 .5.0 × 10−4
. 4.0 × 10−4

SP 2574 77.22 9.52 .3.7 × 10−3
.1.9 × 10−3 2496 89.69 3.23 .7.0 × 10−4

. 5.0 × 10−4

SU 2574 75.75 10.61 .4.3 × 10−3
.1.9 × 10−3 2496 87.26 3.00 .7.0 × 10−4

. 5.0 × 10−4

F 2574 81.45 8.92 .4.0 × 10−3
.1.3 × 10−3 2496 94.27 0.60 .2.0 × 10−4

. 1.0 × 10−4

Table 3. Preprocessing outlier detection results

OBP Industrial Residential 
Total outliers Total rate [%] Total outliers Total  rate  [  %]

1% 110 .1.3 × 10−2 7 . 8.0 × 10−4

10% 4363 0.50 1519 0.18 
25% 32393 3.74 20813 2.47 
1% with moving window 70 .8.0 × 10−3 11 . 1.3 × 10−3

10% with moving window 3061 0.36 775 0.09 
25% with moving window 24477 2.91 13910 1.65
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Fig. 8. DBI results of K-means algorithm dividing data in range of number of clusters 
for industrial (left) and aggregated residential (right) LPs

Fig. 9. Original and clusters mean LPs for both weekdays and weekends for each season 
for industrial (left) and aggregated residential (right) LPs

Table 4. Congestion results 

Cables Load rate [%] Transformers Load rate [%]

Base case 0 – 2 120.00 
AEC lower value 2 111.00 3 135.00 
AEC higher value 24 223.00 11 155.00 
Mean load lower value 6 142.00 4 111.00 
Mean load higher value 52 380.00 14 257.00 
Peak load lower value 8 158.00 7 123.00 
Peak load higher value 35 269.00 13 197.00 

gestion results, with overloaded cables and transformers and their maximum 
load rates. A deeper interpretation of these results is presented in Sect. 6.
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6 Discussion 

Figure 6 shows that in some time steps, the error bars drop below zero, indicating 
high variability, especially in industrial data. Figure 7 reveals that most of the 
data points fall within a low active power range, close to the mean values. Despite 
this, a large standard deviation is observ ed, likely due to the mix of many small
consumers and a few large ones in the dataset.

Considering that the goal is to maximize SR (thereby generating more data) 
and minimize MAPE, RMSE, and JS-D (to ensure that the g enerated data are
more statistically similar to the original), it can be deduced from Tables 1 and 2 
that the generated SLPs for the residential dataset resemble the input LPs more 
closely than those for the industrial dataset. A possible reason is that residential 
data have a standard deviation closer to the mean compared to industrial data, 
meaning that data with fewer variations may be easier to model. This is reflected 
in the SR values, which are consistently higher for the resident ial dataset across
all seasons and day types, as the MEC model tends to produce negative infinite
values more frequently when the distributions of the profiles differ too greatly.
Additionally, a lower (or closer to . 0) JS-D further confirms a greater similarity 
between the synthetic and original PDFs in the residential data.

Data from the fall season were also observed to be slightly easier to replicate, 
as synthetic scenarios from this s eason achieved the lowest MAPE among all
(Tables 1 and 2). This trend is further supported by RMSE values, which are 
also the lowest in most fall cases, along with SR values, which are the highest 
in many instances. Similarly, JS-D values are lowest during the same period, 
indicating a strong match in the statistical distribution of the data. These results
suggest not only high numerical accuracy in the generated SLPs, but also strong
statistical fidelity, due to the closer alignment of the respective PDFs.

Since the idea is to recommend parameter settings based on the metrics 
mentioned above, the tests showed that t he best preprocessing settings involve
using the OBP of .1% (Table 3) and imputing missing va lues with kNN, where
.k = 2 (Fig. 8). Zero measurements should be removed, as they offer little insight 
into load behavior individually. However, their complete removal c an be debated,
as they may reflect realistic load patterns within a larger dataset.

The lowest DBI value was consistently achieved by K-means with two clusters 
across all seasons and day types for both datasets (Fig. 8). For industrial data, 
only the second cluster improved all validation metrics. In the residential case, 
it reduced MAPE but increased RMSE and JS-D, probably due to RMSE’s 
sensitivity to outliers and their impact on probabilit y distributions, affecting
JS-D. Although selecting the second cluster can improve accuracy, it limited
the amount of data used. Figure 9 shows that the second cluster more closely 
resembles the original LP shape. In addition, u sing more SLPs than input LPs
improves accuracy, with .10000 SLPs yielding the b est results.

In Table 4 the AEC condition has the least overloaded cables and transform-
ers compared to the others. This might be due to the mean and peak conditions 
depending only on the daily input LPs, whereas the AEC condition depends on
all daily LPs for the whole year. This contributes to the mean and peak condi-
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tions having more influence on the modeling compared to the AEC condition. 
The higher set value for the mean load also has more influence than the higher 
set value for the peak load. T his is to be expected, as when conditioning, the
mean encompasses all time steps, while the peak only encompasses a few.

Note that this tool can be applied to larger and more complex networks from 
different locations, as long as the associated load data from these topologies are 
also available. The tool is also expected to perform well with low voltage scenarios 
instead of MV ones. However, there are some limitations. Currently, the tool 
cannot handle more than two cases simultaneously. Additionally, the occurrence 
of negative infinite values can become a more significant issue if the LPs differ 
too much from each other. This issue could be mitigated by f urther clustering
to ensure that only similar LPs are used as input. Furthermore, the MEC model
may become computationally intensive when generating large volumes of SLPs,
which poses a challenge to scalability. To address this, dimensionality reduction
algorithms could be employed to select only the most relevant features as input.

7 Conclusion 

The main goal of this research was to improve the utilization of SLPs in dis-
tribution network operations, with two specific sub-goals: improving the use of 
probabilistic generation techniques and enhancing the implementation of SLPs
in power system software.

The first sub-goal was achieved through the development of an open-source 
tool capable of generating SLPs using the MEC approach, based solely on active 
power measurements as input. Additionally, the inclusion o f preprocessing and
clustering significantly improved the accuracy of the generated SLPs, achieving
an average MAPE of .0.56% for industrial consumers and .0.51% for aggregated 
residential consumers over an entire year.

The second sub-goal, enhancing the use of SLPs in power system software, 
was met by enabling the implementation of generated SLPs in both Vision and 
OpenDSS. Moreover, load flow calculations were performed using these SLPs, 
and the resulting congestion metrics were also extracted. 

A cknowledgments. The authors would like to acknowledge that this work is finan-
cially supported by RVO, project no. MOOI622001.

A Appendix: Step by Step Guide 

A.1 Preface 

For the tool to operate properly, all files used should be inside the same folder. 
These include: provided Python tool modules, provided Vision macro file (vmf), 
input dataset(s), and Vision network file (vnf) or OpenDSS network file (dss
file).
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The tool makes use of the following packages, which should be previously 
installed: calendar, matplotlib, multicopula, n umpy, pillow, pandas, scikit-learn,
scipy, seaborn and tk.

To start the tool, run the master module. When implementation in Vision is 
required, the tool should instead be started up w ithin Vision in the macro editor
by opening and executing the vmf named .vision_implementation (Fig. 10). 

Fig. 10. Start s creen

Press start to initiate the tool, and e xit to terminate it.

A.2 Feature selection 

Step 1: Select one or more features you wish to employ (Fig. 11). 
Keep in mind that not all combinations of features work, e.g. preprocessing 

and validation cannot be combined. Furthermore, when selecting MEC gener a-
tion, clustering and validation are also automatically selected.

Step 2: When the selection is performed correctly, the continue button at the 
bottom is enabled and should be pressed. 

The following appendix subsections show the order of screens when all features
are selected.
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Fig. 11. Feature s creen

A.3 Initialization 

Step 1: Select the software for implementation; when OpenDSS is selected, insert 
the network name as well (Fig. 12). 
Step 2: Press select. If done correctly, the console shows information on the input 
type selected and network parameters (number o f normal/transformer loads).
The continue button is enabled and should be pressed.

Fig. 12. Implementation initialization screen
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A.4 Importing data 

Step 1: Determine the number of inputs that should be processed by chec king
or unchecking input 2 (Fig. 13). 

The tool is able to process two inputs simultaneously. This is especially useful 
when implementing into Vision, since different SLPs can be assigned to normal 
loads and transformer loads. If an implementation in OpenDSS is chosen, only 
one input can be processed, as it does not differentiate between normal and trans-
former loads. This also holds when the network in Vision only contains normal
loads or transformer loads.
Step 2: Fill in each input, selecting its type, file name, file type, and unit.

The input type acts as a label in all the following screens to help distinguish 
between inputs. The unit should be the same for both inputs when two inputs are
selected.)
Step 3: Press import. If done correctly, the console shows information on how 
many files are imported, and the continue button is enabled and should be
pressed.

Fig. 13. Importing data screen
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A.5 Preprocessing 

Fig. 14. Preprocessing settings s creen

Step 1: Check or uncheck the removal of zero measurements and press the detect 
button as seen in box 1. The console shows information on the number of dupli-
cates, empty, and zero measurements (Fig. 14). 

The option for removing zero measurements is only available when only the 
preprocessing feature is selected. Otherwise, this option can be selected in the
clustering stage.
Step 2: Press the missing values check button in box 2. The console shows infor-
mation on the number of missing values and its percentage in the dataset. 

If the input dataset c ontains missing values, the percentage check button is
enabled in box 3. Otherwise skip to step 6.
Step 3: Fill in a value for the allowed percentage and press the percentage check 
button in box 3. The console shows information on the number of measurements 
that exceed this limit. 

The value must be between 0 and 100. If measurements contain m ore missing
values than the allowed percentage, the remove button in box 4 is enabled. In
addition, the buttons in box 5 are also enabled.
Step 4: The remove button can be pressed to remove these measurements from 
the dataset. 

If the dataset do es not contain any more missing values, skip to Step 6.
Step 5: Choose an imputation method and press the impute button. When choos-
ing K-NN, the number of neighbors (custom or recommended) should first be
set in box 6 before pressing the impute button.
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The custom number of neighbors should be an integer greater than 0 and less 
than the total data points of one measurement. The recommended number is 2.
Step 6: Choose to continue or search for outliers by setting the outlier range 
breakdown point (custom or recommended) in the now enabled box 7 and press-
ing the detect outliers button in box 8. The console shows the number of outliers 
and its percentage over the dataset. 

The custom outlier range breakdown point should be a percentage expressed
in decimal form and between 0 and 100. For example, 10% should be inserted as
0.1. The recommended value is 1% or 0.01.
Step 7: Pressing the reset button will reset the settings and requires steps 1 t o
6 to be followed again (Fig. 15). 

Fig. 15. Preprocessing results screen

Step 1: Press either the mean button or the histogram button. 
This is optional. Furthermore, a specific date can be inserted to show the 

mean of a certain day contained in the dataset. Otherwise, a random date will
be chosen.
Step 2: Select CSV or Excel and press the export button. 

This is again optional. The exported file is named label_preprocessed_results, 
where the lab el refers to the set of input labels on the importing screen.
Step 3: Press continue to finish the preprocessing stage.
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A.6 Clustering 

Fig. 16. Clustering selection screen

Step 1: Insert one or more month names from the available months i nto the
selected text box (Fig. 16). 

Make sure the name is correctly spelled and starts with capital letters. When 
inserting multiple names, make sure that they are separated with a comma, space
after the comma is not required.
Step 2: When multiple names are inserted, first press the group months button. 
Now, select the type o f day available and press the mean or histogram button.
Step 3: Pressing the clear button will reset this clustering process and requires 
Steps 1 and 2 to b e performed again. Otherwise, the continue button should be
pressed.
Step 1: Check or uncheck the removal of zero measurements and fill in the 
minimum and maximum number of clusters (Fig. 17). 
Step 2: Press the Apply K-means button. The console shows information on 
number of removed zero measurements, the optimum number of clusters with 
corresponding DBI and the number of d ays each cluster consists of.

The number of days refers to the number of daily LPs.
Step 3: Select CSV or Excel and press the export button. 

This is optional. The exported file is named label_cluster_clusternumber, 
where the label refers to the set of i nput labels on the importing screen and the
cluster number to which cluster it is.
Step 4: Pressing the clear button will reset this clustering process and requires 
Steps 1 and 2 to be performed again. Otherwise, the continue button should be
pressed (Fig. 18).
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Fig. 17. Clustering process screen

Fig. 18. Clustering results screen

Step 1: Select either of the input labels at the top when two inputs are processed. 
If only 1 i nput is processed this is not required.

Step 2: Fill in which cluster should be shown in the text box above the plot and 
on the left side of the screen. Followed by pressing either the mean or histogram 
button next to it. 

Below the plot, the number of clusters in which each input is divided in is
shown. For example, if this number is 2, then clusters 1 or 2 can be shown.
Step 3: Repeat step 2 but now for the right side of the screen.
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Step 4: Pressing the clear button on either side of the screen will reset t he plot
and inserted cluster on that side of the screen.
Step 5: Fill in which cluster number should be selected to be used in the model 
in the text box select cluster number below the plot. 

Again, if for example the numb er of clusters in which the input is divided is
2, then cluster 1 or 2 can be selected.
Step 6: Repeat step 5 for the right side of the screen if 2 inputs are processed.
Step 7: Press the select button. The console shows information on which cluster 
is selected and the number of days it consists of.
Step 8: Pressing the reset button will reset this selection process and requires 
Steps 5, 6 and 7 to be performed again. Otherwise, the continue button should
be pressed.

A.7 Generation 

Fig. 19. Generation settings s creen

Step 1: Determine if multiple scenarios should be generated, if so, press the
multiple scenarios button (Fig. 19). 
Step 2: Select the required conditions by either checking or unchec king the rele-
vant condition.
Step 3: Set the value for each selected condition by moving the slider. 

It is also possible to insert exact values by pressing the change input method 
button, which will change the sliders in text boxes where a n exact value can be
inserted. Make sure that this exact value is within the range allowed provided by
the slider.
Step 4: Set the number of desired SLPs (custom, recommended, or same as
input).
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The custom number must be an integer greater than 0. The recommended
number is 10000.
Step 5: Press the generate button. The console shows information on the number 
of successfully generated SLPs, SR, MAPE, RMSE, and JS-D.
Step 6: If multiple scenarios were selected, repeat Steps 2 to 5. 

The console will show the same information for the second scenario. It is 
possible to still view the information of the first scenario by scrolling in the
console.
Step 7: Pressing the reset button will reset the generation process and requires 
Steps 1 to 6 to be performed again.
Step 8: Either press the continue button or the use other cluster button. 

Pressing the use other cluster button results in going back to the previous 
clustering results screen where the selection of cluster number has to be p erformed
again. Furthermore, Steps 1 to 6 on the generation settings screen have to be
performed again as well.

Fig. 20. Generation results screen

Step 1: If multiple scenarios were generated, select above the plot which scenarios 
should be shown in the plot (Fig. 20). 
Step 2: Select to show either the mean, peak, or histogram. 

It is possible to show both the mean and the peak in the same plot. When 
pressing show mean or show peak, the show histogram button is disabled and vice 
versa. 
Step 3: Select CSV or Excel and press the export button. 

This is optional. The exported file is named label_generated_SLPs_
scenario_x, where the label refers to the set of input labels on the importing
screen and scenario_x to which scenario if multiple scenarios were selected.
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A.8 Implementation 

Fig. 21. Implementation process s creen

Step 1: Select which SLPs generated should be assigned to whic h type of loads
(Fig. 21). 

Only when using Vision for implementation can the network contain both 
normal loads and transformer loads. Furthermore, if the number of generated 
SLPs is less than the number of loads, the SLPs are resampled 
Step 2: Press the assign button. The console shows information on whether the 
assignment was successful. 
Step 3: Press the continue button. 

If Vision is used , this will terminate the tool script as the load flow calculation
is initiated in the macro language. For OpenDSS this will perform the load flow
calculation in Python and goes to the next screen.

A.9 Congestion results 

Step 1: Press export and finish (Fig. 22). 
This will export the congestion results to Exc el and terminate the tool script.

A.10 Validation 

If only the validation feature were to be chosen, the fol lowing steps should be
taken (Fig. 23). 
Step 1: Press either the mean button or the histogram button.

This is optional and pressing the clear button will reset the plot.
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Fig. 22. Congestion results screen

Step 2: Press the validate button. The console shows information on all the
validation results.
Step 3: Press the con tinue button.

Fig. 23. Validation screen
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Abstract. This paper proposes a decentralized voltage control strat-
egy for islanded DC microgrids that replaces conventional droop control 
with a reinforcement learning (RL)-based approach. Using a Deep Deter-
ministic Policy Gradient (DDPG) agent, the controller learns to generate 
real-time voltage references based solely on local measurements, eliminat-
ing the need for inter-unit communication. Compared to droop control, 
the proposed method reduces power s haring error from +30% to +8%
and halves bus voltage deviation under high line impedance scenarios.
The framework adapts to dynamic load and network conditions, offering
a scalable and resilient control solution for next-generation microgrids.

Keywords: Reinforcement learning · data-driven control · energy 
management · decentralized cont rol · DC microgrids · hybrid
distributed generation

1 Introduction 

Islanded DC microgrids (DC-MGs) have emerged as a promising solution for 
resilient and sustainable power supply in remote, rural, and off-grid regions due 
to their efficient integration of photovoltaic (PV) and battery energy storage 
systems (BESS). Ensuring voltage stability and accurate power sharing in these 
networks is critical, especially under variable load and generation conditions. 
Traditional d ecentralized control strategies, such as droop-based methods, offer
simplicity and plug-and-play capability but suffer from inherent limitations in the
presence of line impedance mismatch, dynamic disturbances, and non-uniform
load profiles [1, 2]. To address these challenges, advanced control techniques, such
as distributed optimization [3] and hierarchical control frameworks [4, 5], are 
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being explored. These methods aim to enhance stability, improve power sharing 
accuracy, and mitigate the effects o f mismatched line impedances and dynamic
disturbances in islanded DC-MGs.

Classic droop control relies on static voltage-current relationships, which are 
highly sensitive to physical network asymmetries and can lead to inaccurate
power distribution and voltage deviations [6, 7]. Moreover, methods that attempt 
to compensate for these limitations often require centralized coordination or 
inter-unit communication, which compromises scalability and system resilience. 
These challenges are p articularly pronounced in DC systems, where resistive
voltage drops dominate and fast dynamic response is critical [8, 9]. 

Recent advances in data-driven control and reinforcement learning (RL) 
provide a transformative alternative to traditional r ule-based or model-driven
approaches in microgrid control [10]. Complementary to RL strategies, adaptive 
fuzzy logic controllers (AFLCs) have also been applied to maximum power point 
tracking (MPPT) in PV systems, demonstrating improved resilience and track-
ing accuracy under fluctuating solar conditions [11]. These methods collectively 
reframe the voltage regulation problem as a policy optimization task, where the 
objective is to learn a mapping from system observations to control actions that
optimize long-term performance [12]. Unlike classical techniques that rely on 
predefined models, RL-based controllers learn policies through direct interac-
tion with the environment, enabling them to adapt and improve over time [13]. 

In particular, deep reinforcement learning combines neural function approxi-
mation with trial-based learning, allowing the controller to handle nonlinearities, 
parameter uncertainties, and unmodeled dynamics that are difficult to capture
analytically [14]. This is especially valuable in DC microgrids, where fluctuat-
ing load conditions, converter dynamics, and line imp edance mismatches intro-
duce complex system behavior [15]. Moreover, RL enables purely local decision-
making—each distributed generation (DG) unit can operate autonomously with-
out requiring explicit communication with others or access t o centralized coor-
dination, significantly enhancing system modularity and fault tolerance [16]. 

By optimizing control policies in a simulated environment that mirrors real-
world conditions, RL frameworks can be trained offline and deployed with 
lightweight inference logic on embedded controllers [17]. This makes them well-
suited for scalable, real-time voltage regulation in modern microgrids t hat
demand adaptability, robustness, and plug-and-play compatibility [18, 19]. 

This paper introduces a fully decentralized voltage control strategy for 
islanded DC microgrids based on deep reinforcement learning. A Deep Deter-
ministic Policy Gradient (DDPG) agent is trained to generate real-time voltage 
references using only local state measurements. The proposed controller operates 
above conventional PI-regulated buck converters and replaces classical droop
control with a neural network-based policy that adapts to local conditions in
real time. The remainder of this paper is organized as follows: Sect. 2 describes 
the system architecture, Sect. 3 presents the dynamic modeling of the microgrid,
Sect. 4.2 introduces the reinforcement learning-based control strategy, Sect. 5 
details the simulation results, and Sect. 6 concludes the paper.
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2 System Architecture 

The proposed islanded DC microgrid consists of . n hybrid DG units, each com-
prising a PV array and a BESS. These sources are connected via independent 
buck-type DC/DC converters and collectively supply po wer to a shared DC bus
that supports aggregated residential, commercial, and industrial loads.

2.1 Hybrid DG Unit Configuration 

Each hybrid DG unit is composed of two p ower electronic subsystems:

– A PV array connected through a unidirectional buck converter, regulated by 
a maximum p ower point tracking (MPPT) algorithm.

– A BESS interfaced through a bidirectional buck converter, enabling controlled 
charge and discharge operations b ased on load demand and state-of-charge
(SoC) constraints.

The outputs of the PV and battery converters are merged at a local DC 
node and connected to the m ain DC bus through a line impedance modeled by a
series resistance .rli and inductance .Lli . This configuration allows flexible energy 
dispatch from b oth renewable and storage sources.

2.2 DC Bus and Load Interface 

All DG units inject current into a centralized DC bus stabilized by a capacitor
.Cdc, which buffers power imbalances and maintains voltage stability. The DC bus 
supplies heterogeneous loads, including residential appliances, data centers, a nd
commercial facilities, typically interfaced via downstream DC/DC converters.

2.3 Decentralized Control Architecture 

Each DG unit is governed by a three-layer lo cal control architecture:

– Measurement Layer: Acquires local state information including output
current . ioi

, converter voltage .Vci , SoC, PV power, and estimated local load.
– Decision Layer: A data-driven policy .π(si; θ) computes the optimal con-

verter voltage reference .V ∗
i based solely on loc al observations.

– Execution Layer: Inner-loop PI controllers regulate converter d ynamics to
track .V ∗

i by generating the appropriate PWM duty cycle . di. 

This decentralized architecture eliminates the need for inter-unit communi-
cation and enhances system scalability and fault tolerance (Figs. 1 and 2). 

3 Dynamic Modeling for Decentralized Control 

This section presents the nonlinear dynamic model of the microgrid components 
as a foundation for the design and training of decentralized control strategies. 
The modeling focuses on converter dynamics, distribution line behavior, and DC
bus voltage regulation, based on the system architecture described in Sect. 2.
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Fig. 1. High-level architecture of the islanded DC microgrid showing hybrid PV-battery 
DG units interfaced to a common DC bus, with decentralized converter-level control.

Fig. 2. Block diagram of the proposed RL-based decentralized control strategy for a 
hybrid PV-battery DG unit interfaced via a buck converter in an islanded DC-MG.
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3.1 Integrated Modeling of Hybrid DG Units with Buck Converter 
Interface 

1) Converter-Level Dynamics. The electrical behavior of each buck con-
verter is describ ed by the following state-space equations:

.

Li
diLi

dt
= Vsrc,i · di − Vci − rs,iiLi

,

Ci
dVci

dt
= iLi

− ioi
,

(1) 

where .Li and .Ci denote the output filter inductance and c apacitance, respec-
tively; .rs,i models the inductor’s series resistance; .Vsrc,i is the source-side voltage 
from either PV or BESS; .di is the duty cycle from the PWM controller; .iLi

is 
the inductor curren t; .Vci is the converter output voltage; and .ioi

is the output 
current injected in to the microgrid.

2) Distribution Line Model. The interface between each DG converter and 
the main DC bus is represented by an .RL line impedance, which introduces 
voltage drop and dynamic lag. The associated current dynamics are:

.Lli

dioi

dt
= Vci − Vdc − rliioi

, (2) 

where .Lli and .rli represent the line inductance and resistance, respectively, and
.Vdc is the instantaneous voltage at the DC bus.

3) DC Bus Voltage Dynamics. The global voltage stability of the microgrid is 
governed by the dynamics of the shared DC bus capacitor. Applying Kirchhoff’s
current law yields:

.Cdc
dVdc

dt
=

n

i=1

ioi
− iload, (3) 

where .Cdc is the DC bus capacitance and .iload is the total current drawn by the
aggregate DC loads.

4) Modeling Implications for Control Design. Equations (1)–(3) collec-
tively form a nonlinear, coupled dynamic model of the microgrid that captures 
both local converter dynamics and inter-unit interactions through the shared DC 
bus. RL is employed to develop adaptive control strategies that map observed 
local states to optimal voltage references. Depending on system nonlinearity and 
the desired balance between exploration and stability, algorithms such as Deep 
Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO), 
or Twin Delayed DDPG (TD3) can be utilized for policy training. This dynamic
model serves as the simulation environment for training decentralized RL agents,
enabling accurate emulation of converter dynamics, distribution line behavior,
and DC bus voltage fluctuations.
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Furthermore, the structured state-space formulation facilitates closed-loop 
validation of the proposed data-driven control framework. It allows performance 
benchmarking against baseline droop-based strategies under varying operational
conditions, including PV intermittency, load transients, and battery SoC fluctu-
ations.

5) Role in Reinforcement Learning-Based Control. The complete model 
derived in Eqs. (1)–(3) serves as the core environment for training a RL agent, 
which is used to design a decentralized voltage control policy for each DG unit. 
The state-space representation enables accurate simulation of real-time dynam-
ics, making it suitable for reward-driven po licy learning and closed-loop perfor-
mance evaluation. Further details on the RL formulation and training process
are presented in Sect. 4.2. 

4 Reinforcement Learning-Based Voltage Control 
Framework 

This section presents a novel, fully decentralized control framework for energy 
management and power sharing in islanded DC-MGs with hybrid DG units. The 
control strategy replaces conventional droop-based methods with a data-driven 
voltage reference policy, trained via reinforcement o r supervised learning. Each
DG unit operates autonomously based on local measurements, enabling real-time
adaptability and plug-and-play scalability.

4.1 Data-Driven Voltage Reference Generation 

Traditional droop control adjusts the voltage reference of each DG unit based on 
static coefficients linked to the output current, which is sensitive to impedance 
mismatch and lack s adaptability. To overcome these limitations, we propose a
real-time, data-driven voltage reference policy.

Each DG unit computes its local voltage reference .V ∗
i as a function of its 

current state:

.V ∗
i = π(si; θ), (4) 

where .π(·) is a parameterized policy model (e.g., a neural network), . θ denotes 
the policy parameters, and . si is the local state v ector defined as:

.si(t) = [ioi(t), Vci(t),SoCi(t), Ppv,i(t), Pload,i(t)] . (5) 

This formulation enables each DG to respond to local variations in real 
time, facilitating intelligent voltage regulation and autonomous participation
in system-wide power balancing.
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4.2 Policy Learning and Deployment 

The policy .π(·) is trained to minimize a multi-objective cost function that reflects 
power sharing fairness, energy efficiency, and battery health. The local cost func-
tion for DG unit . i is: 

.Ji = α1 ioi − irefi

2
+ α2Rii

2
oi + α3 (SoCi − SoCref)

2
, (6) 

where .irefi is the ideal proportional current, .Ri is the local line resistance, . SoCi

is the measured state of charge, and .SoCref is the desired battery energy leve l.
The weights .α1, α2, α3 define the relative priorities of t he objectives.

The optimal control policy is obtained by minimizing the expected cum ula-
tive cost over time:

.π∗ = arg min
π

E

T

t=0

γtJi(t) , (7) 

where .γ ∈ (0, 1] is the discount factor. The optimization is conducted using 
either RL or supervised learning (SL) methods.

1) Reinforcement Learning-Based Training. In the RL approach, the con-
trol policy is trained through repeated interactions with the simulation environ-
ment modeled in Sect. 3. At each time step, the agent observes the local system 
state, selects a voltage reference action, and r eceives a reward based on the neg-
ative instantaneous cost .−Ji(t). The standard reinforcement learning s etup is
defined by:

– State: .si(t) ∈ R
n—the local observation vector.

– Action: .ai(t) = V ∗
i ∈ [44, 54]—the computed vo ltage reference.

– Reward: .ri(t) = −Ji(t),  whe  re .Ji(t) is defined in Eq. (6). 
– Policy Update: Actor-critic methods such as DDPG, PPO, or TD3.

The policy .π(·; θ) is parameterized b y . θ and can be implemented using deep 
neural networks. Actor-critic frameworks like DDPG are particularly effective in 
continuous action spaces and enable real-time adaptive control. This setup allows 
the agen t to autonomously discover robust and generalizable control policies
across varying operational scenarios.

The complete policy training process for decentralized voltage reference gen-
eration is summarized in Algorithm 1. 

2) Supervised Learning Alternative. When optimal voltage references are 
available from centralized solvers such as Model Predictive Control (MPC) or 
Mixed-Integer Linear Programming (MILP), the control policy can b e trained
offline using supervised learning. In this setting, a labeled dataset of input-output
pairs .{(si, V

∗
i )} is generated, where each input state vector . si corresponds to an 

optimal voltage command .V ∗
i . The policy network is trained to approximate 

this mapping, minimizing a regression loss between predicted and target voltage
references.
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Algorithm 1: Policy training using DDPG for voltage reference control. 
Input: Environment model . E (see Sect. 3), initial policy . π(·; θ)
Output: Optimized policy parameters . θ∗

1 Initialization: Randomly initialize actor parameters . θ and critic parameters . φ
2 foreach episode .e = 1 to .Nepisodes do 
3 Reset environmen t . E , obtain initial state . si(0)
4 foreach time step .t = 0 to . T do 
5 Select action: . V ∗

i (t) = π(si(t); θ) + Nt

6 Apply .V ∗
i (t) to environment, observe: next state .si(t + 1), rew ard

. ri(t) = −Ji(t)
7 Store experience .(si(t), V

∗
i (t), ri(t), si(t + 1)) in replay buffer . D

8 Sample mini-batch from . D
9 Update critic parameters . φ by minimizing TD error:

. yi = ri + γQ (si(t + 1), π (si(t + 1); θ );φ )

. L =
1

N
i

(yi − Q(si(t), V
∗

i (t);φ))
2

10 Update actor parameters . θ using deterministic policy g radient:

. ∇θJ ≈ 1

N
i

∇V ∗
i

Q(si, V
∗

i ) · ∇θπ(si; θ)

11 Soft update target net works:

. θ ← τθ + (1 − τ)θ , φ ← τφ + (1 − τ)φ

12 end 
13 end 

3) Policy Execution and Integration. RL is applied at the decision-making 
layer to learn a data-driven voltage reference policy that maps local system states 
to optimal control actions. The trained policy operates above the conv erter-level
PI controllers, enabling intelligent and adaptive voltage regulation in a fully
decentralized manner.

During online operation, the trained policy is deployed as a lightweight eval-
uator within eac h DG unit. At every control interval:

1. The local state vector . si is measured or estimated.
2. The policy evaluates .V ∗

i = π(si; θ), producing the optimal voltage reference.
3. The inner-loop PI controllers track .V ∗

i by adjusting the PWM duty cycle . di

of the buck con verter.

This structure ensures fast and reliable real-time execution with minimal 
computational overhead. The complete inference and control routine is summa-
rized in Algorithm 2.
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Algorithm 2: Online execution of the learned RL policy using local state
. si and PI-based voltage tracking. 
Input: Local state vector . si(t) = [ioi(t), Vci(t), SoCi(t), Ppv,i(t), PDG,i(t), Vdc(t)]
Output: Voltage reference .V ∗

i (t) for converter control 
1 Initialization: Load pre-trained policy .π(·; θ) for DG unit . i
2 foreach control time step . t do 
3 Measure local observations . si(t)
4 Compute optimal voltage reference:
5 . V ∗

i (t) ← π(si(t); θ)
6 Track .V ∗

i (t) using inner-loop PI voltage and current controllers 
7 Generate PWM duty cycle .di(t) for buck converter switch ing
8 end

4.3 Decentralized and Scalable Operation 

The proposed control framework is fully decentralized. Each DG unit indepen-
dently computes its voltage reference based solely on local measurements, with-
out r equiring communication or coordination with other units. This architecture
inherently supports:

– Resilience to Communication Failures: Control remains stable under 
loss of connectivity o r isolated operation.

– Modularity: Additional DG units can be added or removed without recon-
figuring the global control logic.

– Scalability: The control scheme scales linearly with system size, suitable for
large-scale or heterogeneous microgrids.

By coupling intelligent voltage reference generation with converter-level 
autonomy, the framework enables adaptive power sharing, enhanced bus volt-
age stability, and efficient energy management under renewable variability and 
dynamic load profiles. The next section presents simulation results validating
the proposed method’s effectiveness under multiple operating conditions.

5 Simulation and Results 

To validate the performance of the proposed RL-based control strategy, a 
detailed MATLAB/Simulink simulation model is developed using the system
configuration shown in Fig. 3. The testbed replicates an islanded DC-MG com-
prising two hybrid DG units with rated powers of 2.2 kW and 1.1 kW, respec-
tively. Each DG interfaces a PV source and a (BESS) system through buck-type
DC/DC converters. Local and common loads are included to emulate realistic
demand-side variations.

All DGs are connected to a central DC bus through distribution lines modeled
as resistive–inductive . rl elements. The control system operates in a decentralized
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Fig. 3. Configuration of the implemented i slanded DC-MG.

Table 1. Simulation Parameters of the Islanded DC Microgrid

Category Parameter Value 

DG Units Rated Power (DG1, DG2) 2.2 kW, 1.1 kW 

Local Loads .PL1, PL2 0.5 kW each 

PCC Loads .PL3, PL4 0.7 kW, 1.5 kW 

Line Impedance .Lline, Rline 6. µH, 4.6 m. Ω

Converter Filter .Lf , Rf 2.5 mH, 0.01 . Ω
.Cf 500. µF 

DC Bus Bus Capacitance .Cdc 500. µF 

PI Controllers Voltage (.Kp,v, Ki,v) 4, 300 
Current (.Kp,i, Ki,i) 8, 200 

Battery Model Nominal Capacity (.Cnom) 40 Ah 

Reinforcement Learning Agents 2 .× DDPG 
(DG1, DG2) 

Observation Dimension 6 
Action Bounds 44 V to 54 V 
Policy Sample Time 2  m  s

Simulation Sampling Time .Ts 20. µs 

fashion, with inner-loop PI controllers for voltage and current regulation, and an 
RL agent in the outer loop responsible for generating adaptive voltage references.

Simulation parameters, including converter filter components, line 
impedances, and controller gains, are summarized in Table 1. The simulations are 
executed in MATLAB/Simulink (R2024b) with a sampling time of 20 . µs  and  a  
total simulation duration of 10 s, ensuring adequate capture of both steady-state 
behavior and dynamic transients. Two voltage control strategies are implemented
and compared:

1. Baseline: Conventional classic droop control.
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Fig. 4. DG output curren ts .io1 and .io2 during load variation scenario. RL-based control 
eliminates oscillations c ompared to droop control.

2. Proposed: A decentralized reinforcement learning-based voltage control 
framework employing two DDPG agents, eac h associated with a hybrid DG
unit.

The RL agents are trained and deployed using MATLAB’s Reinforcement 
Learning Toolbox, interacting with the Simulink-based microgrid model in real 
time. The reward function is designed to optimize power sharing accuracy, bat-
tery SoC regulation, and energy efficiency under varying operating conditions.

5.1 Scenario 1: Load Variation 

To evaluate the adaptability of the proposed RL-based voltage control strategy 
under dynamic load conditions, Scenario 1 considers two successive events at
the PCC. At .t = 1 s, Load#4 is increased from 1.5 kW to 2.5 kW, followed by
the disconnection of Load#3 at .t = 6 s. These changes impose significant power 
redistribution demands on the microgrid.

Figure 4 shows the output curren ts .io1 and .io2 under both classical droop con-
trol and the proposed RL-based controller. The droop controller induces oscilla-
tions with dominant frequencies around 26–33 Hz following both load transients. 
In contrast, the RL controller effectively suppresses these oscillations and stabi-
lizes current trajectories faster, enhancing dynamic response and power sharing
stability.
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Fig. 5. Power sharing error comparison between RL-based and dro op control under
load transients.

The power sharing accuracy is assessed in Fig. 5. Under classical droop con-
trol, DG#1 exhibits a sharing error of approximately .+4%, whereas the RL-
based controller limits the error to around .−1.3%, yielding a significantly smaller 
deviation. This improved performance demonstrates the RL agent’s ability to 
maintain accurate and s table current sharing while responding adaptively to
sudden load variations.

5.2 Scenario 2: Impact of High Line Impedance 

This scenario evaluates the impact of elevated distribution line resistance . Rline
on voltage regulation and power sharing performance in the DC microgrid. While 
inductive effects dominate in AC systems, resistive line drops are more critical 
in DC net works. Accordingly, the line resistance is artificially increased tenfold
from the nominal value in Table 1, i.e., .Rline = 46 m. Ω, to emulate extended 
cable runs or degraded conductor conditions, while keeping .Lline unchanged. The 
same disturbance conditions applied in Scenario 1 are also used here: Load#4 is 
increased from 1.5 kW to 2.5 kW at .t = 1 s, and Load 3 is disconnected from the
PCC at .t = 6 s. These events are used to trigger transient power redistribution 
in the microgrid and evaluate controller performance.

Figure 6 shows the power sharing error for both the conventional droop-based 
controller and the proposed RL-based c ontroller. The droop control, which relies
on static .V − I characteristics, suffers from severe power imbalance due to the
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Fig. 6. Power sharing error of DG units under high line impedance (10.× .Zline). 

Fig. 7. DC bus voltage profile under high impedance conditions using classic control
and RL agent.

asymmetric voltage drops introduced by the resistive lines. This results in sig-
nificant deviation from ideal current sharing, with DG#1 showing an overshoot
of approximately .+30%, and DG#2 undershooting by around .−8%. In contrast, 
the RL-based policy limits these deviations to within .+8% and .−3.8%, respec-
tively.
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In Fig. 7, the bus voltage .Vdc is also shown to degrade considerably under 
the droop controller, with transient voltage dips reaching up to .5.85 V  below  
nominal. The RL agent is able to constrain the deviation to less than .2.88 V, 
reflecting improved robustness to resistiv e voltage drops.

Despite the absence of low-frequency oscillations under high impedance con-
ditions for both methods, the RL strategy significantly outperforms the droop 
controller in terms of voltage regulation accuracy and current sharing fairness,
validating its robustness in high-impedance microgrid applications.

Across both scenarios, the RL-based controller outperforms classical droop 
in terms of dynamic response, power sharing fairness, and voltage regulation. 
Particularly in high-impedance conditions, RL mitigates current imbalance and 
a voids excessive bus voltage dips. These results underscore the framework’s
robustness to real-world variability.

6 Conclusion 

A detailed nonlinear dynamic model of the DC-MG, including converter 
dynamic, distribution lines, and shared bus behavior, was developed to serve 
as the RL training environment. The control strategy was evaluated through 
MATLAB/Simulink simulations across representative scenarios involving sud-
den load variations and high line resistance condition. The RL-based controller 
demonstrated superiority in enhancing the dynamic voltage response, and reduc-
ing power sharing errors during load disturbances. It also maintained t he accu-
racy of power sharing and reduced the dc bus voltage deviations under high line
resistance conditions. These results underscore the RL strategy’s adaptability,
resilience, and scalability, making it a strong candidate for decentralized control
in multi DG microgrid.

While this work benchmarked performance against conventional droop con-
trol, future studies will include comparisons with more advanced strategies such 
as model predictive control and hierarchical schemes to offer a broader evalua-
tion. 
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Abstract. Digitalization holds significant potential to improve the efficiency, flex-
ibility, and sustainability of District Heating (DH) systems. However, the transi-
tion toward digitalized DH is often constrained by challenges beyond technol-
ogy—such as regulatory uncertainty, unclear business models, fragmented orga-
nizational capacity, and misaligned stakeholder incentives. This paper offers a 
comparative, qualitative analysis of how digitalization is adopted, perceived, and 
implemented in DH systems in Denmark and Sweden—two of the most mature DH 
markets globally. Based on expert survey data collected under the IEA DHC Annex 
TS9 initiative, the study explores adoption trends across operational, customer-
facing, and strategic domains. Findings reveal that while digital tools like smart 
meters, Supervisory Control and Data Acquisition (SCADA) systems, and AI-
based analytics are being introduced, systemic barriers, such as General Data Pro-
tection Regulation (GDPR) related constraints, lack of clear return on investment, 
and digital skills gaps, continue to slow progress. Denmark’s strengths in infras-
tructure and coordination contrast with Sweden’s more diverse but fragmented 
innovation landscape. The study identifies key enablers: tariff reform, regulatory 
sandboxes, and capacity building, and offers context-sensitive policy and strategic 
recommendations. These insights contribute to advancing digitalization in the DH 
sector and to shaping future research and policymaking in smart energy system 
transformation. 

Keywords: Digitalization · District heating · Denmark · Sweden · Smart energy 
systems · Energy policy · Barriers · Business model innovation 

1 Introduction 

DH systems form a critical part of urban energy infrastructure in many countries, par-
ticularly in Europe, where they play a key role in providing centralized space heating 
and domestic hot water in a cost-effective and low-carbon manner [1]. As the energy 
sector undergoes rapid decarbonization and digital transformation, DH systems are also 
evolving to meet new expectations for efficiency, flexibility, and sustainability. This evo-
lution is embodied in the concept of Fourth Generation District Heating (4GDH), which
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emphasizes low-temperature operation, integration of renewable energy sources, and 
system-level flexibility [2, 3]. 

Digitalization is increasingly seen as a strategic enabler in this transition. It promises 
to enhance system performance through predictive maintenance, real-time optimiza-
tion, customer-side demand response, and data-driven energy management [4, 5]. Smart 
meters, sensors, and intelligent control systems offer the potential to reduce thermal 
losses, optimize grid operations, and improve consumer engagement. Moreover, as urban 
areas strive to become “smart” and climate-neutral, digitally enhanced DH systems are 
expected to play a foundational role in integrated energy planning. 

However, the digitalization of DH systems remains in its early stages in most 
countries. While some frontrunners—such as Denmark and Sweden—have introduced 
advanced digital tools, widespread adoption remains uneven and fragmented. Existing 
literature and policy reports often focus on individual technical solutions or national 
case studies, but there remains a lack of comparative, cross-disciplinary analysis that 
explores how digitalization is perceived, implemented, and challenged in DH systems 
across different institutional, regulatory, and organizational settings. Moreover, few stud-
ies address the interplay between digital tools, business models, and policy environments, 
or the barriers that prevent digitalization from scaling beyond pilot projects. 

This paper aims to fill this gap by providing a comparative, qualitative analysis of the 
digitalization of DH in Denmark and Sweden—two of the most advanced DH markets 
globally. While the empirical focus is on these two countries, the broader objective is to 
generate insights that are relevant to other regions seeking to digitalize their DH systems, 
including countries with emerging DH markets or those undergoing modernization. 
The study identifies key enablers and obstacles related to technological integration, 
organizational capacity, customer engagement, and regulatory frameworks, contributing 
to the growing field of energy informatics and digital energy system transformation. 

The central research questions guiding this study are: 

1. What are the current trends in digital tool adoption within DH systems in Denmark 
and Sweden? 

2. What benefits, barriers, and strategic considerations are perceived by DH experts 
regarding digitalization? 

3. How can lessons from these two countries inform broader strategies for digital 
transformation in the heat sector? 

To investigate these questions, the study draws on qualitative data gathered from 
academic experts in Denmark and Sweden through a structured survey conducted under 
the IEA DHC Annex TS9 initiative. The analysis focuses on the adoption of digital tools 
across operational, customer-facing, and strategic domains, while also examining the 
broader institutional and regulatory conditions shaping digitalization in each national 
context. By comparing these two advanced DH markets, the study aims to provide 
transferable insights for other regions considering or advancing digital transitions in the 
heat sector. 

The remainder of the paper is structured as follows: Sect. 2 reviews the state of the 
art in digitalization of district heating, including key thematic areas; Sect. 3 outlines 
the methodology and data sources; Sect. 4 presents national-level findings on adoption
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trends, perceived benefits, and barriers; Sect. 5 offers a cross-country synthesis and iden-
tifies systemic challenges and enabling factors; Sect. 6 discusses the policy, strategic, and 
organizational implications; and Sect. 7 concludes with recommendations and directions 
for future research. 

2 Literature Review 

Digitalization in DH is emerging as a key research and policy topic, particularly in the 
context of achieving low-carbon, efficient, and consumer-responsive energy systems. 
This section reviews the state of knowledge across the main dimensions explored in this 
study: operational performance, customer engagement, data analytics, organizational 
readiness, and the policy and regulatory environment. The review also identifies research 
gaps that this paper seeks to address. 

2.1 Digitalization and Operational Performance in District Heating 

Early digitalization in DH focused on automation and remote monitoring, notably 
through SCADA systems and Fault Detection and Diagnostics (FDD). These tools 
improve reliability and thermal efficiency by identifying system anomalies such as 
improper return temperatures and hidden faults [6, 7]. For instance, smart meter and sen-
sor data in Denmark has enabled detection of customer-level inefficiencies, contributing 
to operational cost savings and emission reductions [8]. 

Pilot projects like EnergyLab Nordhavn in Copenhagen have demonstrated how dig-
ital control of heat storage and dynamic source switching (e.g., between combined heat 
and power and electric boilers) can increase system flexibility and align heat production 
with electricity market signals [9]. Despite promising results, real-time optimization and 
AI-driven control remain rare in mainstream DH operations. 

2.2 Customer Engagement and Demand-Side Digitalization 

Digital technologies also offer significant potential on the demand side, including smart 
thermostats, consumption visualization tools, and feedback-based energy behavior inter-
ventions. These tools empower end-users and enable prosumer participation, such as 
feeding excess heat into the network [10]. 

Studies have shown that better user control and real-time feedback can enable build-
ings to operate effectively at reduced supply temperatures, facilitating the transition to 
4GDH [11]. However, most implementations are limited to pilot projects, and customer-
facing services are often underdeveloped, especially in conservative or municipally 
owned utilities. 

2.3 Data Analytics and Artificial Intelligence in DH 

Big data and AI offer new opportunities to optimize DH systems through predictive 
maintenance, demand forecasting, and network performance analytics. For example, AI 
models can identify performance issues at the substation level or optimize distribution
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temperatures based on weather and user profiles [12]. According to Statista, in 2023, 
nearly all respondents reported using AI tools, with 77% using Generative AI, 71% using 
Large Language Models, and only 2.86% not using any of these technologies [13]  (as  
shown in Figure 1). 

Moreover, the IEA DHC Annex TS4 project guidebook provides an overview of how 
digitalization can enhance District Heating and Cooling (DHC) systems [14]. However, 
adoption is uneven. Some utilities are cautious due to policy restrictions, internal skill 
gaps, or data privacy concerns. The report [14] notes that even when data is collected, it 
is not always effectively used, highlighting a gap between data availability and analytical 
maturity [4]. 

Fig. 1. Artificial Intelligence and the Technologies Used in Nordic Organizations [13]. 

2.4 Organizational Readiness and Business Model Innovation 

Organizational capacity and business model adaptability are critical for realizing the 
benefits of digitalization. Literature emphasizes the importance of IT/OT integration,
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in-house digital skills, and leadership commitment [15]. Yet, many DH companies— 
particularly smaller or municipally owned ones—lack dedicated digital teams or strategic 
digitalization roadmaps. 

Business model innovation, such as transitioning from heat sales to “heat-as-a-
service (HaaS),” is gaining attention but remains at an early stage. HaaS refers to a 
model where an energy company supplies heat to customers as a service, without selling 
the equipment or energy directly [16]. A Swedish study of municipal DH firms found 
that traditional cost-plus pricing models often disincentivize efficiency improvements, 
while uncertainty about return on investment (ROI) hinders digital experimentation [17]. 

2.5 Policy, Regulation, and Data Governance 

The policy and regulatory environment significantly shape digitalization efforts. While 
supportive energy and climate policies can accelerate digital innovation, restrictive or 
unclear regulations—particularly around data privacy—often act as barriers. The EU’s 
GDPR, while vital for safeguarding user rights, has introduced administrative burdens 
and ambiguity regarding the permissible use of granular consumption data [18]. 

Literature also highlights the absence of clear regulatory frameworks for emerging 
services such as demand response participation or prosumer heat integration, leaving 
utilities uncertain about investing in enabling technologies. 

3 Methodology 

This study applied qualitative data from a structured questionnaire developed for the IEA 
DHC Annex TS9 project on “Digitalization in DH and Cooling”. The survey explored 
how digital tools create value in DH systems, covering efficiency, flexibility, customer 
service, risk management, and innovation. It included mostly closed-ended questions, 
with some open-ended responses. Respondents are consisting of four academic experts 
(two each from Denmark and Sweden) who are engaged in DH digitalization research. 

The analysis maintains full confidentiality, using only anonymized and aggregated 
data. Selected quotes, edited for clarity and without attribution, illustrate key points. 
These insights are examined in the discussion to inform future digitalization strategies 
in DH policy and implementation.
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To present the findings, a narrative comparison in the text and summary tables are 
presented. Table 1 provides an overview of the extent of digitalization in key areas of DH 
operations as indicated by the respondents, comparing Denmark and Sweden. The legend 
is also provided to provide a concise, standardized label (e.g., “Moderate Adoption”) 
for the longer, descriptive phrases found within the table. 

Table 1. Perceptions on Digitalization in Key Areas of DH. 

Key Areas Denmark Sweden 

Operations & Maintenance Moderate Adoption: Some 
advanced fault detection in 
place, but not widespread 

Limited to Moderate 
Adoption: Focus on efficiency 
and return temps growing, but 
many processes still manual 

Energy Management Limited Adoption: Some 
pilots on price-based source 
switching and load shifting, but 
real-time optimization is rare. 

Limited Adoption: Some 
forecasting tools used, but grid 
flexibility and dynamic 
optimization are still 
early-stage 

Customer & Demand Side Partial Implementation: Some 
utilities offer apps; prosumer 
heat feed-in and smart 
thermostat pilots exist but 
remain rare 

Partial Implementation: 
Online consumption data is 
common, but interactive 
services and customer heat 
integration are still limited to 
pilots 

Data & Analytics Mixed Adoption: Some 
utilities use AI and predictive 
models; others remain cautious. 
Data collection is widespread, 
with GDPR managed internally 

Highly Mixed Adoption: 
Some avoid AI due to policy 
concerns; others fully adopt it. 
Data use is moderate overall, 
with privacy fears limiting use, 
especially in smaller firms 

Strategy & Business Emerging Impact: 
Digitalization appears in 
strategies, but new business 
models are limited. Some early 
steps toward “heat-as-a-service” 

Mixed Impact: Some use 
digital tools for new services; 
others focus on maintaining 
existing operations 

Maturity Level Legend:

• Moderate Adoption: Digital tools are used, but widespread advanced implementation 
may still be lacking.

• Limited to Moderate Adoption: Some digital tools are implemented, but adoption is 
not extensive, and many processes may remain manual.

• Limited Adoption: Basic digital tools may be present, but advanced applications, 
such as real-time optimization or dynamic control, are rare or in early stages.

• Partial Implementation: Certain aspects of digitalization are in place, but comprehen-
sive integration or advanced features are still underdeveloped.
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• Mixed Adoption: Varies significantly among different entities within the sector; some 
adopt extensively, while others remain cautious or avoid certain tools.

• Highly Mixed Adoption: Extreme variability in adoption, with some leading in digital 
integration and others facing significant constraints.

• Emerging Impact: Digitalization is beginning to appear in strategic plans, but its 
transformative effect on business models is still limited.

• Mixed Impact: Digital tools are used, but their influence varies from supporting 
existing operations to exploring new services. 

4 National Perspectives on Digitalization in DH: Insights 
from Denmark and Sweden 

This section presents national level insights into the digitalization of DH in Denmark 
and Sweden, based on expert survey responses. Each sub-section outlines the national 
context and policy environment, the current state of digital tool adoption, perceived 
benefits, barriers to implementation, and illustrative examples from practice. Moreover, 
the National policy timelines for DH Digitalization in Denmark and Sweden is shown 
in Table 2. 

4.1 Denmark 

National Context and Policy Landscape. Denmark has one of the most advanced DH 
systems globally, with over 60% of households connected and a strong commitment 
to decarbonization. By 2030, 90% of DH energy is expected to come from renew-
able sources [3]. The Danish energy strategy emphasizes 4GDH, focusing on low-
temperature operation, improved efficiency, and integration with renewable electricity 
[2]. This provides a favorable environment for digital innovation, further supported by 
national research and demonstration projects such as EnergyLab Nordhavn. 

Digital Adoption Across Key Domains. Danish experts reported moderate adoption of 
digital tools across most operational areas. Fault detection, predictive maintenance, and 
SCADA systems are used, especially in larger utilities. However, real-time optimization 
and dynamic source switching (e.g., based on electricity prices) remain limited to pilots. 

On the customer side, apps and digital interfaces are partially implemented, and 
prosumer models—where customers can feed heat back into the grid—exist mostly as 
experimental projects. Smart thermostat integration and end-user comfort controls have 
been seen limited to moderate implementation. 

In terms of data and analytics, adoption is mixed. While some utilities extensively use 
AI and predictive models, others remain cautious. Smart meter data is widely available, 
and GDPR compliance is generally handled internally. 

Strategically, digitalization appears in long-term planning documents but has yet to 
fully influence business model transformation. Concepts such as “heat-as-a-service” are 
emerging, but traditional heat delivery remains dominant. 

Perceived Benefits and Value Creation. Experts identified several benefits of digital-
ization. Improved data use has enhanced system monitoring, control, and fault detec-
tion. For example, the use of “heat boosters” (small, decentralized heat pumps) in
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Viborg allowed for lower supply temperatures and reduced return temperatures to 30°C, 
enabling demand-side flexibility and consumer savings through the “motivation tariff” 
scheme. The motivation tariff refers to the pricing program in DH that encourage con-
sumers to lower their return temperature [19]. Digital tools also support energy efficiency 
improvements by identifying substation inefficiencies and reducing heat losses. 

Barriers to Adoption and Implementation. Barriers in Denmark are predominantly 
economic and organizational rather than technical. Experts noted unclear business cases 
and insufficient alignment of financial incentives across stakeholders. For instance, build-
ing owners may not directly benefit from digital upgrades that reduce heat loss, creating 
a “split incentive” issue. Without clear ROI, many DH companies, especially smaller 
or non-profit ones, are hesitant to adopt advanced digital technologies. Technical con-
cerns, such as data integration or GDPR compliance, were mentioned but not considered 
significant impediments due to Denmark’s strong infrastructure. 

Notable examples include EnergyLab Nordhavn’s demonstration of smart control in 
DH networks and the motivation tariff scheme, which encourages consumers to reduce 
return temperatures. The Viborg case illustrates how combining digital control with 
hardware innovation can yield financial and environmental benefits. 

4.2 Sweden 

National Context and Policy Landscape. Sweden’s DH sector expanded rapidly in the 
1970s, driven by the oil crisis, environmental concerns, and state support [20]. Today, DH 
accounts for more than 50% of space heating, especially in urban areas. The Swedish 
Energy Agency has funded multiple projects focused on smart energy systems, and 
several utilities have pioneered digital initiatives (e.g., Växjö Energi’s use of AI for 
demand forecasting [18]). However, the sector includes both large, innovative companies 
and smaller, risk-averse municipal utilities, leading to uneven digital progress. 

Digital Adoption Across Key Domains. Swedish experts reported a similarly moderate 
but varied level of digital adoption. Fault detection, predictive maintenance, and smart 
control tools are used to some extent, though implementation is often partial. Supply-
demand forecasting and grid flexibility services are at an early stage, and peak load 
management is largely unimplemented. 

Customer-facing platforms are limited. While online consumption dashboards exist, 
interactive services and prosumer integration are mostly confined to pilots. Smart 
thermostats have seen some implementation, particularly in trials by Stockholm Exergi. 

Data analytics adoption varies significantly. One expert noted full AI integration, 
while another cited internal restriction preventing its use. These differences reflect 
divergent digital strategies and capabilities within Swedish utilities. 

Perceived Benefits and Value Creation. Swedish experts agreed on the operational 
value of digitalization. Substation-level analytics have enabled detection of faulty equip-
ment contributing to high return temperatures. Digitalization has also helped standardize 
operations, improve temperature stability, and support internal coordination. Some util-
ities are exploring business model innovations, such as building energy management
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services and integrated cooling offerings, indicating potential for diversification beyond 
heat supply. 

Barriers to Adoption and Implementation. Barriers in Sweden are primarily regula-
tory and organizational. GDPR compliance and rigid procurement standards were seen 
as significant obstacles, especially for smaller firms. One expert criticized the excessive 
focus on data governance and procedural compliance before any services or use cases 
are clearly defined. This “process over innovation” culture slows digital progress and 
deters experimentation. 

Organizational conservatism, particularly in municipally owned utilities, also hin-
ders adoption. Without dedicated digitalization teams or strong internal mandates, many 
companies outsource innovation or wait until technologies are fully proven before adop-
tion. Skills shortages, especially in data science and IT/OT integration further limit 
progress. 

Examples include Växjö Energi’s AI-driven forecasting, Stockholm Exergi’s smart 
thermostat pilots, and utilities exploring service innovations such as cooling and comfort 
management. These efforts highlight the potential of digital tools, but also the systemic 
obstacles that need to be overcome. 

Table 2. National Policy Timelines for DH Digitalization. 

Country Policy/Development Area Description Relevant Date/Period 

Denmark Renewable Energy Target 90% of DH energy is 
expected to be renewable 

By 2030 

Tariff Innovation Motivation tariff for 
behavioral and technological 
change 

Ongoing (existing) 

Demonstration Projects Projects like EnergyLab 
Nordhavn demonstrate smart 
DH control 

Ongoing 

Sweden DH Sector Expansion DH sector rapidly grew due 
to several factors 

1970s 

Digital Initiatives Swedish Energy Agency has 
funded projects (e.g., Växjö 
Energi and Stockholm 
Exergi) 

Ongoing 

5 Cross-Country Insights on Digitalization Progress, Challenges, 
and Enablers 

This section synthesizes and compares insights from Denmark and Sweden to provide 
a broader understanding of how digitalization is progressing in DH, what benefits are 
being realized, which barriers persist, and what enabling factors can support broader 
adoption.



88 Z. Ma et al.

5.1 Patterns of Digital Adoption Across Domains 

Digitalization across the DH sectors in both countries is advancing incrementally. Experts 
consistently described implementation as “moderate” in key operational areas, including 
fault detection, predictive maintenance, and supply-demand forecasting. Smart meters 
and SCADA systems are in regular use, particularly in Denmark, where infrastructure 
and data access are well developed. Sweden shows a more fragmented picture, with some 
utilities adopting AI and advanced analytics, while others lag due to strategic hesitancy 
or policy constraints. 

Notably, real-time optimization, AI-driven automation, and consumer-facing ser-
vices remain limited to pilot projects or early-stage deployment. Sweden demonstrates 
a wider disparity among utilities, with some digital frontrunners contrasted by others 
showing minimal innovation. In Denmark, uptake is more uniformly moderate—even 
in smaller systems—thanks to strong infrastructure and a centralized policy push. 

The demand-side digitalization is still emerging in both countries. While customer 
dashboards and smart thermostats are being piloted, interactive features and prosumer 
integration are not widely adopted. This highlights an untapped potential for user-driven 
efficiency and flexibility services. 

5.2 Perceived Benefits and Value Creation 

Experts from both countries agree that digitalization brings clear benefits, especially in 
operational efficiency and cost savings. Benefits highlighted include:

• Improved operational control through fault detection, return temperature manage-
ment, and smart metering.

• Energy savings and emission reductions via optimization of temperature levels and 
more dynamic load shifting.

• Data-driven planning and diagnostics that improve asset maintenance and investment 
decisions.

• Emerging service innovation in Sweden, where some utilities are developing 
integrated comfort, cooling, or energy management services. 

The Danish perspective emphasizes internal efficiency gains—reducing waste, 
losses, and supply temperatures—within a relatively stable, often non-profit system. 
In contrast, the Swedish case illustrates how digitalization can support competitive 
differentiation, particularly in markets facing pressure from heat pumps or private 
heating providers. These contrasting priorities suggest that digitalization serves both 
cost-effectiveness and business model diversification, depending on context. 

5.3 Barriers to Digital Transformation 

While technical tools are available and maturing, both countries face persistent systemic 
barriers. Table 3 summarizes key barriers, their descriptions, and how prominently they 
appear in each national context.
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Table 3. Key Barriers to Digitalization in DH. 

Barrier/Challenge Description and Context 

Unclear Use Cases / Business Case Difficulty in identifying and quantifying the tangible 
benefits of digital investments. Many DH companies are 
unsure how specific digital tools translate to revenue or 
cost savings. 

Misaligned Incentives The payer for digital improvements may not be the 
beneficiary, and without mechanisms to share savings, 
stakeholders lack motivation to engage in digitalization. 

Regulatory & Data Privacy Hurdles Strict regulations (e.g., GDPR) and unclear guidelines 
on data sharing and flexibility remuneration create 
uncertainty and slow digital initiatives. 

Organizational Conservatism Many DH organizations resist digitalization due to a 
preference for proven methods, risk aversion, or 
outsourcing innovation, delaying adoption. 

Digital Skills Gap Shortage of expertise in data science, IT, and modern 
control systems within DH companies. 

Integration Challenges Technical barriers in integrating new digital tools with 
legacy infrastructure, (e.g., lack of standardized data 
formats, older equipment) 

These findings suggest that many of the barriers are non-technical. Economic and 
institutional factors—such as weak incentive structures or regulatory ambiguity—exert 
more influence than technology maturity. This is consistent with literature on digital 
energy transitions, which highlights that governance and organizational culture often 
determine innovation outcomes more than technological availability. 

5.4 Enablers for Scaling Digitalization 

Despite the barriers, both countries have several levers that can accelerate digital 
transformation in DH systems:

• Strong policy signals: National climate strategies and international collaborations 
(e.g., IEA DHC, EU projects) help anchor digitalization in broader policy frameworks.

• Tariff innovation: Denmark’s “motivation tariff” is an example of how pricing struc-
tures can incentivize behavioral and technological change. Similar mechanisms could 
reward flexibility or data-driven performance.

• Demonstration projects: Real-world pilots, like EnergyLab Nordhavn in Denmark 
or Växjö Energi in Sweden, illustrate the value of digital tools. Expanding such 
projects and sharing best practices across the sector can reduce uncertainty and build 
confidence.

• Organizational capacity building: Utilities with internal digital teams or aca-
demic partnerships are better positioned to adapt. Support for upskilling and digital 
workforce development will be critical, particularly for smaller utilities.
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• Regulatory flexibility: “Sandbox” environments that temporarily relax data-sharing 
or procurement rules can facilitate innovation without full-scale reform. These could 
be particularly valuable in overcoming GDPR-related hesitations.

• Customer-driven momentum: As customer expectations rise, especially in urban 
and environmentally conscious markets, utilities may be compelled to offer smarter, 
more transparent services. 

While Denmark and Sweden are both digitalization leaders in the DH sector, their 
experiences diverge in key respects. Denmark’s progress is rooted in system-level plan-
ning, energy efficiency, and strong infrastructure. Sweden’s progress is more uneven 
but shows promise in service innovation and market responsiveness. These differences 
underscore the importance of context-sensitive strategies that account for local policy, 
ownership models, and market dynamics. 

6 Policy and Strategic Recommendations for Scaling Digitalization 
in DH 

This section draws on cross-country findings and relevant literature to propose strate-
gic and policy measures for advancing the digital transformation of DH. The analysis 
emphasizes the need for differentiated but coordinated interventions across regulation, 
governance, business models, and workforce development. While Denmark and Sweden 
serve as empirical anchors, the lessons are relevant to a broader international audience 
navigating the transition toward smarter, low-carbon thermal systems. 

6.1 Priorities Emerging from Cross-Country Lessons 

The comparative findings from Denmark and Sweden reveal that digitalization in DH is 
not constrained by technology availability but by a range of systemic, institutional, and 
economic factors. Both countries demonstrate moderate and uneven adoption across key 
digital domains, yet the underlying drivers differ. 

Denmark’s digital progress is rooted in strong policy alignment and technical infras-
tructure but limited by organizational conservatism and a lack of clear business cases for 
many digital investments. In contrast, Sweden shows a more fragmented digital land-
scape, with some utilities adopting innovative AI-based services while others remain 
constrained by regulatory caution and resource gaps. 

These differences point to the need for context-sensitive strategies. In Denmark, 
enhancing digitalization requires better alignment of incentives and clearer economic 
rationales for utilities—especially those operating under non-profit models. In Sweden, 
overcoming policy rigidity and building internal digital capacity are more urgent. For 
both countries, and the sector globally, the path forward must prioritize integration 
of digitalization into long-term decarbonization, customer engagement, and resilience 
strategies, consistent with the broader principles of 4GDH as defined by [2].
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6.2 Policy Measures and Implementation Actions 

Public policy must play an enabling role in overcoming the structural barriers identified. 
A priority is reforming tariff structures. Existing cost-recovery pricing models often 
disincentivize energy efficiency or flexible heat delivery. In Denmark, the motivation 
tariff already rewards lower return temperatures; such outcome-based pricing could 
be expanded to support real-time control, demand response, and prosumer integration. 
Sweden, where competitive utilities face pressure from heat pumps, would benefit from 
more dynamic pricing schemes that reflect value-added digital services. 

Another critical lever is data governance. While the EU’s GDPR provides necessary 
protections, its strict interpretation in energy contexts—particularly in Sweden—has cre-
ated procedural burdens that hinder innovation. Governments must clarify how energy 
utilities can legally and ethically process, share, and aggregate consumption data. Estab-
lishing sector-specific guidelines, trusted data platforms, or regulatory sandboxes would 
help balance privacy with innovation [17]. 

Continued public investment in digitalization R&D and demonstration projects is 
essential. Both countries have benefitted from national and EU-funded pilots—such as 
EnergyLab Nordhavn and Västerås’s flexible DH grid—but policy frameworks must 
now move beyond experimentation to incentivize scale-up. This includes support for 
replication, dissemination of successful use cases, and the removal of legal or procedural 
barriers to implementation. 

Policy must explicitly support business model innovation. Municipal regulations and 
ownership structures should be updated to allow utilities to transition from heat-only 
providers to broader service integrators—offering energy management, smart control, 
or even cooling. In Sweden, this may also require revisiting competition law to allow con-
structive cooperation between utilities and technology providers in service innovation, 
as discussed in the context of sustainability transitions [7]. 

Moreover, governments and regulatory bodies in both Denmark and Sweden are 
exploring ways to reduce ambiguity in data governance. Pilot projects and regulatory 
sandbox approaches, for example, are being tested to allow utilities to trial innovative dig-
ital services involving personal consumption data under relaxed compliance conditions. 
These developments represent practical steps toward reconciling GDPR obligations with 
the innovation demands of a digitalized DH sector. 

6.3 Strengthening Sectoral Readiness and Innovation Capacity 

The success of any digitalization strategy depends not only on technology or policy, but 
on the internal capabilities of DH operators. A recurring theme across expert responses is 
the shortage of in-house digital skills, particularly in smaller or municipally owned utili-
ties. These organizations often lack staff with expertise in data science, IT/OT integration, 
cybersecurity, or digital business development. 

To address this, governments, universities, and industry associations should jointly 
support sector-wide capacity building. National training initiatives on digital energy ana-
lytics, AI for thermal networks, and cybersecurity compliance can help upskill existing 
staff. In Denmark, this effort could be aligned with existing energy informatics programs.
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In Sweden, partnerships between utilities and technical universities can help overcome 
resource limitations and encourage in-house learning. 

Regulators also have a role to play in supporting innovative culture. A more agile 
regulatory environment—such as allowing time-bound pilot projects to operate outside 
full compliance—is needed. Sandbox approaches, in which rules are temporarily relaxed 
under strict oversight, have been effective in the electricity sector and could be adapted 
to DH. Such frameworks allow experimentation without risking legal or reputational 
harm, encouraging utilities to test new services, data-sharing models, or AI tools, as 
supported by the IEA’s digitalization guidance for the heating sector [4]. 

Finally, engaging customers as co-creators of value will be vital. As digital tools 
enable more responsive, transparent, and user-centered heating services, utilities must 
be prepared to explain, market, and adapt these offerings. Proactive customer education 
and digital service design—especially in response to heat pump competition—will help 
ensure long-term engagement and differentiation. 

6.4 Broader Applicability and International Relevance 

While this study focused on Denmark and Sweden, its findings are applicable to other 
countries seeking to modernize or expand their DH systems. Many European countries— 
such as Finland, Germany, Poland, and the UK—face similar challenges in balancing 
legacy infrastructure with new digital imperatives. In emerging markets like China, 
where DH expansion is ongoing, integrating digital tools from the outset could avoid 
future retrofit costs and embed flexibility into system design. 

Pan-European instruments such as Horizon Europe and EU cohesion funds can be 
leveraged to promote cross-border learning, fund technical interoperability standards, 
and build regional digital infrastructure for thermal energy. The IEA DHC Annex TS9 and 
TS4 initiatives already provide transnational platforms for exchange; these efforts should 
be expanded and aligned with policy developments in smart grids, building automation, 
and urban resilience. As highlighted in recent IEA reports, digitalization must be treated 
as a foundational pillar for energy system transformation across all vectors, including 
heat [8]. 

In general, countries with high DH penetration must recognize that digitalization is 
not an optional upgrade but a foundational element of future-proofing the heat sector. 
Without it, low-carbon targets, energy efficiency gains, and consumer-centric services 
will be increasingly difficult to deliver. 

7 Conclusion 

This study examined the digitalization of DH systems through a comparative qualita-
tive analysis of Denmark and Sweden, two leading DH markets. Drawing on expert 
responses and literature, the study assessed the current state of digital adoption, iden-
tified perceived benefits, and analyzed structural barriers and enabling conditions. By 
exploring operational, organizational, and regulatory dimensions, the paper contributes 
to a more holistic understanding of the systemic factors shaping digital transitions in the 
heat sector.
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Findings show that while digital tools such as smart meters, SCADA systems, and 
AI-based analytics are gaining traction, implementation remains moderate and uneven. 
Denmark benefits from centralized coordination and infrastructure, but adoption is hin-
dered by limited business case clarity and incentive misalignment. Sweden shows a 
broader range of innovation, especially in service offerings, but is constrained by reg-
ulatory rigidity and organizational conservatism. Both countries illustrate how non-
technical barriers—such as governance structures, data privacy rules, and workforce 
readiness—often outweigh technological limitations. 

These insights suggest that policy frameworks must go beyond supporting technol-
ogy development to address institutional and market design. Regulators and municipal-
ities can enable progress by modernizing tariff systems, clarifying GDPR-compliant 
data usage, and creating safe spaces for experimentation through regulatory sand-
boxes. Strategic investments in workforce development, cross-sectoral partnerships, 
and customer engagement are also essential to build long-term digital capacity in DH 
systems. 

The study was conducted on small samples with only four academic experts (two 
from each country). The approach significantly limits the representativeness of findings 
and may not capture the full diversity of perspectives within the sector. Future study 
should consider a broader range of stakeholders (e.g., industry practitioners, utility 
operators, and regulatory stakeholders) to triangulate insights beyond academic per-
spective. Future research should also examine end-user behavior and perception analy-
sis, particularly concerning digital feedback and smart tariff schemes, addressing con-
sumer response, uptake behavior. Comparative studies across more varied policies and 
market contexts (e.g., Central and Eastern Europe or East Asia) would also enhance 
generalizability 

Overall, digitalization is emerging as a critical enabler of smarter, more sustainable, 
and customer-responsive district heating. While Denmark and Sweden are relatively 
advanced, their experiences reflect challenges that many DH systems will face glob-
ally. Coordinated policy reform, innovative business models, and sustained knowledge 
exchange will be key to accelerating the transition. With the right conditions, the coming 
decade could mark a turning point for digital DH as a pillar of the low-carbon urban 
energy future. 
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Abstract. Transitioning to low-temperature district heating (LTDH) is an imper-
ative approach for decarbonizing energy supply systems in the Nordic region. 
This study introduces a novel evaluation of scalable renovation strategies and 
explores the integration of renewable technologies in a real Swedish residential 
area. Through aggregated urban building energy modeling and statistical historic 
level inputs, two sets of energy efficiency retrofit scenarios together with the pro-
jected climate conditions for 2020, 2050, and 2080 are systematically analyzed 
to determine their impact on energy demand, peak loads, emissions, and system 
optimization. Both operational and embodied carbon emissions are quantified, and 
the techno-economic feasibility of ground source heat pumps and photovoltaic-
thermal (PVT) systems is assessed. The results indicate that deep retrofit measures 
can achieve up to a 35% reduction in peak loads, alongside significant improve-
ments in energy efficiency and solar energy utilization. These findings highlight 
the value of coupling demand-side renovations with decentralized renewable gen-
eration to facilitate the transition towards LTDH implementation and enhance 
urban climate resilience. This research supports district-level renovation strategies, 
aligning with Sweden’s pathway toward net-zero emissions. 

Keywords: Low-Temperature District Heating (LTDH) · Building Stock 
Renovation · Peak Load Reduction · Decentralized Energy Systems · 
Operational and Embodied Carbon Emissions · Urban Energy Simulation 

1 Introduction 

1.1 Context and Motivation 

The European building sector is responsible for approximately 40% of final energy con-
sumption and 36% of CO2 emissions, with residential buildings comprising a significant 
share of this footprint [1]. In Sweden, district heating (DH) networks dominate thermal 
energy supply, servicing over 90% of residential units, primarily due to the historical 
availability of affordable biomass resources, municipal energy planning strategies, and 
established centralized infrastructure [2]. Historically, these systems have been designed
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for high-temperature operation (70–90°C), significantly limiting their compatibility with 
lower-temperature renewable energy sources and waste heat recovery technologies, thus 
hindering broader decarbonization and energy efficiency initiatives [3]. 

As Sweden advances toward its net-zero emissions target by 2045, modernizing 
existing DH infrastructure is imperative. The transition to LTDH, operating below 
55 °C, offers substantial benefits in terms of system efficiency, reduced distribution 
losses, and enhanced integration of decentralized renewable energy sources, such as 
solar thermal, shallow geothermal, and sewage heat recovery [4, 5]. Despite substan-
tial energy-saving opportunities, the renovation rate of the existing European building 
stock remains critically low, frequently below 1% annually. This sluggish pace is pre-
dominantly due to demand-side barriers, including limited occupant engagement, split 
incentives, and insufficient public awareness, alongside supply-side limitations such as 
constrained contractor capacity and prohibitive upfront investments, collectively imped-
ing critical national emissions reduction targets [6, 7]. To address these challenges, 
the European Union’s Renovation Wave Strategy underscores the need for data-driven, 
scalable approaches that can accelerate renovation efforts and inform strategic resource 
planning [8]. 

1.2 Problem Statement and Research Gap 

Current renovation practices predominantly adopt a “bottom-up,” single-building-at-a-
time approach, which is resource-intensive and lacks scalability [9]. While detailed, these 
models fall short in supporting strategic, district-level renovation planning. Con- versely, 
“top-down” simulation tools, capable of aggregating building data and modelling urban-
scale energy dynamics [10], present a viable pathway to upscale renovation strategies and 
optimize resources across building stocks, while taking advantage of statistical historic 
level construction database. However, despite the recognized potential, there remains 
limited research explicitly integrating urban-scale, top-down simulation frameworks 
with decentralized energy optimization strategies such as building-level heat pumps, 
PVT systems, and shallow geothermal in a cohesive model. Addressing this gap is 
crucial to enable scalable, data-driven solutions capable of significantly accelerating 
renovation rates and informing strategic district-level planning decisions. Moreover, the 
coupling study of energy demand reduction, resource allocation, and climate impact at 
the district level is underexplored, especially in the context of Nordic residential areas. 

1.3 Research Objectives 

This research specifically focuses on the Rymdgatan residential district in Borlänge, 
Sweden, consisting of ten multi-family buildings constructed in the 1990s. These build-
ings typify Swedish residential stock of this era, characterized by suboptimal thermal 
envelopes and high dependence on legacy high-temperature DH systems. The district 
serves as a strategically representative case, providing valuable insights and scalable 
examples for similarly constructed residential areas across Nordic climates. Using 
statistical historic level inputs, the research simulates a range of retrofit strategies 

including light and deep renovations and evaluates the performance of decentralized 
optimization measures such as heat pumps, PVT systems, and geothermal energy, within
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the context of a LTDH transition. By addressing existing methodological and practical 
gaps, this study develops a calibrated, aggregated urban building energy model for this 
representative Swedish residential area to evaluate district-scale renovation strategies 
concerning the following objectives: 

1. Quantify seasonal and annual energy demand profiles across multiple retrofit scenar-
ios, assessing variations in hourly load patterns, peak demand magnitudes, and their 
implications for LTDH system compatibility. 

2. Evaluate emissions impacts by comparing operational CO2 reductions achieved 
through retrofit measures and decentralized supply integration, alongside embodied 
carbon associated with material use and technology deployment. 

3. Assess solar energy utilization potential at the building and district level, examining 
PVT contributions to self-sufficiency, self-consumption, and temporal load balancing 
under different technological and climatic scenarios. 

4. Analyse the performance and feasibility of decentralized energy systems, including 
ground-source heat pumps, PVT, and shallow geothermal technologies, focusing on 
their role in peak load mitigation, supply-demand matching, and long-term techno-
economic viability in support of LTDH transitions. 

2 Literature Review and Theoretical Context 

District heating systems have long been central to thermal energy supply in Nordic 
countries, with over 90% of Swedish multi-family residences connected to such networks 
[2]. Traditionally, these systems operate at high supply temperatures (70–90°C), which 
restricts the integration of low-grade renewable sources such as waste heat and solar 
thermal energy [3]. To address these limitations and improve efficiency, the sector is 
transitioning to 4th and 5th Generation District Heating and Cooling (4GDH/5GDHC). 
These next-generation systems operate at supply temperatures below 55°C, allowing 
for thermal energy exchange through decentralized, bidirectional flows and enhancing 
compatibility with solar, geothermal, and heat recovery technologies [4, 5, 11]. A key 
principle underlying LTDH is the creation of energy synergies, wherein the interplay 
between supply-side systems (e.g., ground-source heat pumps, PVT collectors, and solar 
thermal) and demand-side efficiencies (e.g., envelope upgrades, mechanical ventilation) 
enhances performance, resilience, and carbon mitigation [12, 13]. However, dynamic 
modelling of these synergies at the district scale remains methodologically challenging 
due to thermal inertia, spatial heterogeneity, and fluctuating user behaviour, requiring 
advanced multi-objective optimization frameworks [14]. 

In the Swedish context, the relevance of these challenges is underscored by the 
characteristics of the residential building stock, particularly post-war developments like 
the Million Programme housing, which are marked by poor insulation and high thermal 
loads [6]. Although retrofit potential is high, the renovation rate remains under 1% annu-
ally insufficient to meet national climate goals [8]. Conventional renovation approaches 
largely follow bottom-up methods focused on individual buildings, which lack scala-
bility, are resource-intensive, and fail to support system-level planning [9]. In response, 
the European Renovation Wave strategy calls for top-down, data-driven methodologies 
capable of evaluating impacts across entire building stocks [15].
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While tools like SimStadt and UrbanOpt also support urban-scale modeling, CEA 
offers integrated LCA modules, hourly resolution, and GIS coupling, making it more 
adaptable for LTDH scenario planning in Nordic contexts [16]. Urban Building Energy 
Models (UBEMs), such as the City Energy Analyst (CEA), have emerged as valuable 
tools to bridge this methodological gap. These platforms simulate energy flows, retrofit 
effects, and supply system configurations at urban scales [10, 17–19]. By enabling sce-
nario analysis, capital investment estimation, and the development of spatially informed 
decarbonization pathways, UBEMs provide a practical pathway application, particu-
larly in medium-density districts typical of Sweden. As it remains limited in the current 
literature, it is highly relevant for advancing both research and practice in this context. 
Building on these insights, this study employs a calibrated top-down UBEM approach to 
investigate the energy, emissions, and economic implications of retrofit and decentralized 
supply scenarios for a representative cold-climate Swedish residential district. 

3 Methodology 

3.1 Case Study Area and Simulation Platform 

This study employs a simulation-based approach to assess retrofit strategies and decen-
tralized energy configurations for 10 building blocks in Rymdgatan residential district 
in Borlänge, Sweden. The representative multi-family buildings constructed in the early 
1990s that being characterized by moderate insulation levels and reliance on high-
temperature district heating (HTDH). Building energy performance was modelled in 
a top-down approach. The CEA tool as one of the most well recognized top-down 
UBEM is employed. Due to the characteristics of aggregated data and socio-economic 
drivers to simplify complexity, reduce data intensity, and enhance scalability, it allows 
for efficient analysis and planning across large urban areas without the need for detailed, 
building-specific data collection, making it more practical for large-scale renovation 
projects [10, 19]. Moreover, CEA’s hourly resolution, integrated life-cycle carbon mod-
elling, and GIS compatibility make it suitable for district-level scenario planning under 
evolving climatic and policy contexts. 

To enhance efficiency and achieve more realistic inputs, the model is fed with statisti-
cal historic level inputs that incorporate geometry from cadastral GIS datasets, envelope 
properties in accordance with TABULA(European typology database used for archetype 
modelling) [20] recommendations for Swedish multi-family houses (1990– 1995), and 
occupancy/internal load profiles based on established Swedish residential 

schedules. Weather data were obtained from SMHI (Sveriges meteorologiska och 
hydrologiska institut) using Typical Meteorological Year (TMY) datasets for Borlänge. 
Two retrofit levels light and deep were applied across time milestones (2020, 2050, 
2080), including envelope enhancements, ventilation upgrades, and integration of onsite 
renewable systems (PVT, solar thermal, and shallow geothermal probes). 

The developed CEA model was calibrated using measured energy data for 2018. 
The actual annual heating demand for the district was 672.71 MWh/year, compared 
to the simulated baseline value of 692.20 MWh/year. A CV (RMSE) (Coefficient of 
Variation of the Root Mean Squared Error) of 2.89% was achieved well below the 
15% benchmark for annual calibration accuracy demonstrating strong agreement and
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ensuring model robustness for scenario-based analysis [7]. No manual tuning beyond 
standardized parameters was applied, supporting the transferability of the modelling 
approach to other urban districts. 

3.2 Simulation Framework and Scenario Development 

The simulation framework consisted of a baseline scenario (HTDH, no retrofit) and six 
retrofit scenarios: 2020 LR/DR, 2050 LR/DR, and 2080 LR/DR. Each combined enve-
lope interventions with varying degrees of decentralized supply integration, including 
ground-source heat pumps (GSHPs), PVT collectors, and solar thermal systems. Cen-
tralized optimization was excluded to reflect a realistic decentralized LTDH transition. 
Figure 1 illustrates the methodological workflow. The methodology for this study began 
with comprehensive data collection and input preparation. Occupancy and schedule 
data were collected to capture occupant loads, daily and seasonal schedules, appliance 
usage, lighting, domestic hot water consumption, and internal electricity use. Then, the 
collected data underwent preprocessing and validation. The next phase involved scenario 
development, where two sets of energy efficiency retrofit scenarios were formulated to 
represent both shallow and deep renovation strategies, focusing on building envelope 
improvements, upgrades to heating and ventilation systems, and the integration limits 
for photovoltaic-thermal (PVT) systems. In addition, weather and occupancy data for 
the years 2020, 2050, and 2080 were integrated to assess the impact of projected climate 
conditions on building energy performance. Overall, Urban building energy modeling 
simulated district-level energy demand, peak loads, and system behavior. Ground source 
heat pumps and photovoltaic-thermal systems were assessed for integration. Both opera-
tional and embodied carbon emissions were quantified. Results were visualized, report-
ing energy demand, peak load reduction, emissions, and techno-economic metrics to sup-
port low-temperature district heating transition and net-zero goals. Table 1 summarizes 
retrofit characteristics and technology assumptions per scenario. At the end, the overall 
performance was evaluated across four dimensions: energy demand (seasonal/annual 
load profiles and peak demand), emissions (operational CO2 emissions and embodied 
carbon based on life-cycle assessment principles), techno-economics (CAPEX, OPEX, 
and TAC), and renewable integration (self-sufficiency and self-consumption ratios of 
distributed systems). 

Cost and performance projections for PVT and GSHP were based on IEA Technology 
Roadmap (2023), assuming 20% cost decline and +15% efficiency increase by 2050 
compared to 2020 levels. Internal loads were based on standard occupancy profiles from 
Sveby (2020) for Swedish multi-family houses: 2.4 persons/unit, with 7–9 kWh/m2/year 
appliance loads and 10 W/m2 lighting gains. 

4 Results and Discussion 

4.1 Seasonal Energy Demand Profiles 

Figure 2 illustrates average daily energy demand for typical winter (January) and summer 
(July) across all scenarios. In winter, the baseline has a peak load of 354.6 kWh, which 
was reduced by 42% in the 2080 Deep Retrofit (DR) scenario, demonstrating both the
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Fig. 1. Methodology Workflow 

Table 1. Scenario specifications, including retrofit levels and technology integrations

effectiveness of envelope improvements and system upgrades and the future climate 
influence. Light retrofits (LR) show moderate reductions, with noticeable performance 
gaps compared to the DR configurations. In summer, energy demand is largely driven 
by domestic hot water (DHW) and base loads. The baseline summer peak of 79.2 kWh
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drops to 42.1 kWh in 2080 DR. Although the overall load is lower, the DRs still half 
peak values, confirming their year-round impact. Some early stage retrofit scenarios 
(e.g., 2020 LR) present minor summer anomalies due to thermal inertia shifts and DHW 
system lag, reinforcing the need for integrated control strategies during transition phases.

Fig. 2. Average daily energy demands profiles for winter (January) and summer (July) across the 
Baseline and retrofit scenarios. 

4.2 Emissions Impact: Operational and Embodied Carbon 

Operational carbon emissions decline by 50% across scenarios from 61.08 tons CO2 
in 2020 LR to 30.74 tons in 2080 DR while per-area emissions fell from 13.8 to 6.95 
kg CO2/m2. District heating for DHW remains the largest source of emissions, increas-
ingly dominant as other end uses were decarbonized. Grid electricity emissions remain 
marginal (2–4.5%), with reductions constrained by energy mix and system operation 
(Fig. 3). 

Embodied emissions, constant across scenarios due to standardized material assump-
tions, were 57.23 tons CO2/year (12.99 kg CO2/m2/year). This reinforces the long-term 
carbon benefit of operational savings, justifying deep retrofits even with higher upfront 
material impacts (Fig. 4). 

4.3 Solar Energy Utilization Potential 

Annual solar energy yield varies substantially with technology and scenario. While the 
baseline offered 97,850 kWh/year, peak generation was achieved in 2050 DR (240,057 
kWh/year) due to expanded solar thermal and PVT deployment. In contrast, 2080 scenar-
ios experienced a reduced yield (≈124,000 kWh) due to a different expanded deployment 
of Copper Indium Gallium Selenide (CIGS)-based PVT modules. Multi-crystalline PVT
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Fig. 3. Total and average operational carbon emissions across Baseline and retrofit scenarios 

Fig. 4. Contribution of grid electricity and district heating (DHW) to total operational emissions 
per scenario. 

modules show higher efficiency at moderate temperatures and longer lifespan in north-
ern climates compared to CIGS, which are more sensitive to thermal degradation. This 
aligns with recent findings in Völzel et al., [21]. The selection of technology plays a 
critical role with one finding that multi-crystalline modules in 2050 scenarios outper-
form CIGS in 2080 by >30,000 kWh. This highlights the need for strategic selection of 
future-proof solar technologies aligned with system and climate targets (Fig. 5). 

4.4 Decentralized Supply System Performance and Optimization 

This analysis investigates how decentralised heating supply systems evolve across energy 
retrofit scenarios. It focuses on three core metrics: heating system capacity composition, 
annualized economic performance, and operational greenhouse gas (GHG) emissions.
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Fig. 5. Solar energy utilization potential across all scenarios from PV, PVT, and solar thermal 
systems. 

All results are derived from optimized configurations for each building, representing the 
best-performing supply system per scenario (Fig. 6). 

Fig. 6. Installed capacity of boilers and GSHPs by scenario 

Regarding technology transition and capacity planning, as shown in Fig. 6, the transi-
tion to decentralized systems yields substantial benefits in capacity planning, emissions, 
and lifecycle cost. GSHPs progressively replaced gas boilers, which declined from 156 
kW in the baseline to <100 kW in retrofit scenarios. No fuel cells were selected in any 
case, due to unfavorable techno-economic parameters. 

Regarding peak heating load reductions across scenarios, one of the critical indicators 
of decentralized system effectiveness in LTDH transitions is the reduction in peak heating 
loads at the building level. As illustrated in Fig. 7, across all buildings, peak heating loads 
fell by up to 35% especially in energy-intensive buildings like B1009 and B1010. This
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Fig. 7. Peak heating load per building across scenarios, showing significant reductions under 
retrofit and decentralized supply configurations 

supports system downsizing and enhances LTDH compatibility. Such reductions reduce 
distribution infrastructure needs and seasonal thermal stress. 

Fig. 8. Annualized CAPEX, fixed and variable OPEX per scenario 

Regarding cost efficiency and economic trends, the evolution in system configuration 
has a direct impact on lifecycle costs Fig. 8. Total Annualized Cost (TAC) fell from USD 
50,000 (baseline) to under USD 18,200 in 2050 DR. Cost reductions stemmed from 
smaller system sizing, reduced variable OPEX, and improved control strategies. The 
2080 scenarios retained sub-USD 20,000 TAC, validating future-ready configurations. 

Regarding emissions performance, the most dramatic change is observed in opera-
tional GHG emissions. As depicted in Fig. 9, emissions drop from 17.2 tons CO2/year 
in the Baseline to just 1.8–1.9 tons in the 2050 and 2080 DR scenarios. This nearly 
90% reduction is attributed to the significant reduction in boiler usage and increased 
deployment of GSHPs, which are expected to operate using a decarbonizing electricity
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Fig. 9. Operational GHG emissions across all scenarios 

grid in future timelines. Importantly, the plateau between 2050 and 2080 scenarios indi-
cates that emissions reductions reach an effective minimum by mid-century, affirming 
the sufficiency of 2050-level decarbonisation strategies under the modeled conditions. 

The findings confirm that decentralised, electrified heating systems can offer substan-
tial environmental and economic benefits when combined with building retrofits. While 
GSHPs emerge as the technology of choice, natural gas boilers remain useful as backup 
or peak-load systems. System optimization enables cost-effective solutions that main-
tain performance while significantly reducing operational carbon. The marginal gains 
between 2050 and 2080 reflect diminishing returns as systems approach their optimal 
efficiency and sustainability limits. 

5 Conclusion 

This study presents a district-scale evaluation of renovation strategies and decentralized 
energy systems for a representative residential area in Borlänge, Sweden. Using the CEA, 
seven scenarios were simulated across three timeframes (2020, 2050, 2080), examining 
their impacts on energy demand, emissions, and techno-economic performance under a 
LTDH transition pathway. The results demonstrate that deep retrofit strategies, particu-
larly when combined with decentralized supply systems such as GSHPs and PVT mod-
ules, significantly reduce both energy consumption and operational carbon emissions. 
The 2080 DR scenario achieved a 42% reduction in peak winter heating demand and 
47% reduction in summer base loads, affirming the effectiveness of advanced envelope 
measures in shaping seasonal demand profiles. 

While this study emphasizes decentralized LTDH systems, centralized LTDH net-
works using biomass or waste heat may offer economies of scale. However, their rigidity 
limits responsiveness to future load shifts, making decentralised systems more future-
proof in mixed-use districts [11]. Operational CO2 emissions declined by up to 50%, 
while peak heating loads were reduced by 35% in high-demand buildings, supporting
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LTDH compatibility and infrastructure downsizing. Total annualized system costs are 
estimated with a drop over 60% in 2050 DR, underscoring the long-term economic via-
bility of electrified, retrofit-integrated solutions. Solar energy contribution is projected 
to peak in 2050 DR, highlighting the influence of technology choice on renewable 
yield. While the findings are district-specific, the modeling approach based on statisti-
cal archetypes, standardized building physics (TABULA), and climate zones makes the 
framework transferable to other mid-density districts in cold climates. 

Deep retrofits, while beneficial long-term, face social feasibility barriers such as ten-
ant relocation, split incentives in rental housing, and upfront capital constraints. Future 
work must incorporate stakeholder analysis and co-benefits to improve uptake. By inte-
grating calibrated urban energy simulations with life-cycle emissions and cost assess-
ments, this study provides robust, scalable evidence for policymakers and planners. 
The findings confirm that mid-century deep renovations, when coupled with distributed 
energy supply, can meet decarbonization goals without waiting for long-term technolog-
ical shifts. The calibrated modeling workflow developed herein is transferable to other 
Nordic cities with similar mid-90s building stock and DH legacy systems. 

While this study has primarily focused on energy demand, emissions, and technoe-
conomic outcomes, it is important to recognize that occupant comfort and resilience will 
become increasingly significant as district heating systems transition to lower tempera-
tures. Future research should therefore include a detailed assessment of indoor thermal 
comfort, air quality, and the ability of renovated buildings to maintain healthy and com-
fortable conditions during extreme weather events or system disruptions. By integrating 
occupant-centric metrics and resilience indicators into scenario analyses, future work can 
ensure that renovation and renewable integration strategies not only achieve energy and 
climate targets but also support the well-being and adaptability of residents in a chang-
ing climate. In addition, it should include a comparative analysis of centralized systems 
alongside decentralized configurations to evaluate their performance under LTDH con-
ditions. Incorporating higher-resolution calibration data, dynamic control strategies, and 
thermal storage will improve model accuracy and flexibility assessment. Multi-objective 
optimization considering cost, comfort, and embodied emissions will further enhance 
the robustness of district-level renovation planning. 

6 Appendices 

Appendix A. Retrofit Scenario Specifications 

Building Element Baseline U-value / 
Spec 

Light Retrofit Deep Retrofit 

External Wall 0.35 W/m2K 0.16 W/m2K 0.07 W/m2K 

Window 2.88 W/m2K 0.9 W/m2K 0.16 W/m2K 

Roof 0.20 W/m2K 0.08 W/m2K 0.05 W/m2K 

Floor 0.20 W/m2K 0.19 W/m2K 0.19 W/m2K 

Air Leakage (n50) 1.0 ach 0.7 ach 0.4 ach

(continued)
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(continued)

Building Element Baseline U-value /
Spec

Light Retrofit Deep Retrofit

Ventilation System Mech. Vent. (no heat 
recovery) 

Mech. Vent. (no HRV) Mech. Vent. With HRV 

Appendix B. Peak Heating Load per Building Across Scenarios 

Building Peak Load 
(Baseline) 
[W] 

Peak Load 
(2020 LR) 
[W] 

Peak 
Load 
(2020 
DR) [W] 

Peak Load 
(2050 LR) 
[W] 

Peak 
Load 
(2050 
DR) [W] 

Peak Load 
(2080 LR) 
[W] 

Peak 
Load 
(2080 
DR) [W] 

B1000 6577.87 4133.73 3891.01 3595.62 3390.69 3223.45 2650.23 

B1001 31023.27 22892.36 21051.54 22362.95 19642.14 20936.91 17691.16 

B1002 36421.2 27387.74 24121.03 26878.14 22715.74 24794.28 20438.61 

B1003 30956.61 22890.77 20881.47 22520.79 19829.65 20828.17 17562.41 

B1004 30958.37 22946.23 21215.52 22627.92 19697.33 20882.56 17613.96 

B1005 31091.66 22886.00 20805.51 22415.08 19669.74 20879.65 17562.41 

B1006 30824.98 22652.84 20772.83 22147.43 19590.88 20351.22 17413.87 

B1007 30824.98 22599.75 20604.34 22091.34 19563.76 20567.53 17549.87 

B1008 30958.37 22656.03 20604.34 22041.45 19669.44 20460.16 17363.26 

B1009 30828.51 38513.62 20689.09 38041.85 19460.63 34766.26 17416.29 

B1010 36421.20 45413.16 24126.60 44748.22 22767.25 40983.07 20254.12 

Appendix C. Cost and Emission Factors 

Parameter Value Source/Note 

CAPEX – Ground Source Heat 
Pump 
(GSHP) 

1,500 USD/kW CEA Default + Adjusted from 
Results 

CAPEX – Photovoltaic-Thermal 
(PVT) System 

1,000 USD/m2 Assumed from Scenario Inputs 
(2050 vs 2080 tech) 

OPEX – Fixed Annual Cost 
(GSHP + PVT) 

5% of CAPEX Standard industry assumption (5%) 

OPEX – Variable Cost per kWh 
(Grid/DH) 

0.10 USD/kWh Used in 
OPEX_var_USD column of 
optimization results 

Discount Rate (TAC Calculation) 3% annually Applied in TAC_USD calculation 

Emission Factor – District Heating 0.079 kg CO2/kWh Used in Sect. 4.2 (Emissions 
Impact) 

(continued) 
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(continued) 

Parameter Value Source/Note 

Emission Factor – Grid Electricity 0.012 kg CO2/kWh Low-carbon Swedish grid, as used 
in model 

Embodied Carbon – 
Retrofit Materials 

30–60 kg CO2/m2 Estimated from retrofit depth and 
OneClick LCA profiles 

Appendix D. Model Calibration Summary 

Calibration Parameter Value Notes 

Measured Annual Heating Demand 
(2018) 

672.71 MWh/year Actualenergydata from utility 
records 

SimulatedBaseline Heating Demand 692.20 MWh/year Baseline CEA model output for 
existing condi-
tions 

Calibration Error (Δ 
kWh/year) 

19.49 MWh/year Absolutedifference 
between measured and simulated 

Coefficient of Variation of RMSE 
(CV(RMSE)) 

2.89% Used to validate model accuracy 

Calibration Threshold Benchmark < 15%(ASHRAE 
Guideline 14) 

Acceptable for annual model 
calibration 
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Abstract. District heating (DH) systems have evolved from steam-based heat 
transport using boilers to combined heat and power (CHP) generation, and more 
recently to low-temperature heat supply using heat pumps (HP). As DH systems 
represent a critical energy infrastructure in Nordic regions, it is essential to examine 
their performance in the context of urban energy transitions. This study investigates 
exergy consumption in representative archetypes of DH system by developing a 
parametric model that quantifies the exergy balance across three subsystems: heat 
generation, heat transfer, and heat exchange within buildings. The results of the 
parametric analysis indicate that exergy consumption associated with pumping is a 
more significant contributor to overall exergy balance than the exergy loss through 
heat dissipation. Specifically, the analysis reveals that the exergy input required 
for pumps consistently exceeds that required for heat generation. The key finding 
is that the heat transfer process, particularly the pumping operation, constitutes 
the primary source of exergy loss in DH systems, underscoring the importance of 
optimizing this component to enhance overall system efficiency. 

Keywords: district heating · exergy consumption · exergy balance equation 

1 Introduction 

1.1 Energy Theory 

The degradation of heat, energy conversion processes, and the qualitative status of energy 
can be analyzed using exergy theory [1]. A wide range of studies have applied this theo-
retical framework to evaluate the performance of energy systems, including heat pump 
systems [2], HVAC systems in buildings [3], and district heating systems [4–6]. Likewise, 
the energy and exergy analysis on geothermal energy delivery process was conducted to 
identify the relationship between exergy gain and consumption by applying analytical 
models of geothermal energy system [7]. In this study, exergy theory is employed to ana-
lyze the flow and transformation of exergy across a series of interconnected subsystems 
using balance equations. Emphasis is placed on evaluating the district heating process 
by examining the balance between exergy input and exergy consumption.
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Exergy consumption in the system arises from the following processes: (1) energy 
conversion from electromagnetic to mechanical energy, (2) friction losses at the shaft 
(e.g., in ball bearings) and at the impeller wheel (due to interaction between water 
and blades), and (3) thermal energy transfer through the piping network. These exergy 
losses are inherent and unavoidable in the operation of the system. Therefore, evaluating 
the system from an exergy perspective is essential for assessing its performance and 
identifying opportunities for improvement. The system’s feasibility is assessed based on 
an exergy balance, which accounts for the exergy input at the pump the exergy consumed 
throughout the process. If the pump efficiency is denoted by η, this efficiency represents 
the portion of input energy converted into kinetic power, which is used to generate a 
pressure differential across the impeller. This kinetic energy is ultimately dissipated as 
thermal energy through friction. The remaining energy is released as waste heat around 
the pump housing and into the machine room. These phenomena must be considered in 
evaluating system performance. 

1.2 Objectives 

The objective of the research is to analyze the exergy consumption characteristics and 
input/output balance of different district heating (DH) system archetypes (Boiler based, 
CHP based, and HP based) by developing a parametric exergy balance model. The 
model is designed to evaluate exergy flows across subsystems (heat generation, heat 
transfer, and heat exchange in buildings) under varying operational and environmental 
conditions. The parametric study systematically varies critical factors such as the distance 
between the DH plant and buildings, the environmental reference temperature used in 
exergy calculations, and the volume of water or steam used for heat delivery. Each 
DH archetype is examined through corresponding case studies to assess and compare 
performance across system configurations. 

2 Methodology 

2.1 System Configuration 

Figure 1 presents the configuration of the district heating (DH) system, which is com-
posed of four subsystems. Subsystem 1 corresponds to heat generation at the DH plant; 
Subsystem 2 covers heat distribution from the plant to the buildings; Subsystem 3 
involves heat exchange within the buildings; and Subsystem 4 represents the return 
flow of the heat delivery system. The white arrows in Fig. 1 indicate the directions of 
exergy input and output. 

The primary input factors include: (1) electricity supplied to the pump, which gen-
erates a pressure differential across the system, and (2) thermal energy supplied by the 
heat generator at the DH plant. The output factors include: (3) thermal energy delivered 
to the buildings and (4) heat losses that occur during heat transfer, which are treated as 
exergy outputs.
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Fig. 1. System configuration 

2.2 Exergy Balance Equation at Subsystems 

The exergy balance equations for each subsystem are presented in Eqs. (1)–(4). The 
Eq. (1) describes the exergy balance in subsystem 1 shown in Fig. 1. As well as Eq. (1), 
the Eqs. (2)–(4) do the exergy balances in subsystems 2, 3, and 4 in Fig. 1.  The  left-
hand side of each equation represents the exergy input to the system, which includes the 
thermal exergy carried by the water (Xin), the kinetic exergy associated with the water 
flow ( 1 2 ρv

2V ) and the pressure exergy introduced by the pump (Xw). Additionally, the 
exergy consumed within the system is denoted as Xc.  In  Eq  . (1), represents the exergy 
gained from the heat generator as fuel (Xfuel). The right-hand side of each equation 
accounts for the exergy output from the system, such as the thermal exergy carried by 
the water (Xout) and the kinetic exergy. Because the system under study is a closed loop 
with constant velocity and flow rate, the kinetic exergy of the incoming and outgoing 
streams remains equal. The terms XQloss in Eq. (2) and Eq. (4) represent exergy outputs 
as heat losses through heat transferring process, while Xdelivery in Eq. (3) denotes the 
exergy delivered to the building side. 

Xin1 + 1 
2 
ρυ2V + Xfuel − Xc1 = 1 

2 
ρυ2V + Xout1 (1) 

Xin2 + 1 
2 
ρυ2V + Xw2 − Xc2 = XQloss2 + 1 

2 
ρυ2V + Xout2 (2) 

Xin3 + 1 
2 
ρυ2V − Xc3 = Xdelivery + 1 

2 
ρυ2V + Xout3 (3) 

Xin4 + 1 
2 
ρυ2V + Xw4 − Xc4 = XQloss4 + 1 

2 
ρυ2V + Xout4 (4) 

The pump locates in subsystem 2 but the power input to the pump is distributed across 
all subsystems. It is considered as thermal energy dissipated due to friction within each 
subsystem. The exergy associated with the pump is therefore equivalent to the total 
mechanical work performed by all subsystems (Wi). 

Xw = W = Qf 
η (5)
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The friction resulting from the pressure difference between the inlet and outlet of 
subsystem i is expressed by Eq. (6). The capacity of the circulation pump is determined 
by the overall pressure level within the piping network, which corresponds to the total 
pressure drop across all subsystems. The pressure drop in each subsystem is allocated 
proportionally based on the pipe length associated with that subsystem. The thermal 
energy generated by friction in subsystem i is calculated using Eq. (7). 

Qfi = (Pin i − Pout i)V (6) 

Qfi = π 
8 
· fd · D · li · ρ · v3 (7)

Here, fd denotes the dimensionless friction coefficient, D is the pipe diameter [m], li is 
the length of the pipe in subsystem i [m], ρ is the water density [kg/m3], and v is the 
flow velocity [m/s]. In the case of cooling (cold water delivery) during summer, the heat 
generated by friction acts as an undesired thermal gain. Conversely, during the heating 
in winter, this frictional heat contributes positively to the thermal delivery. 

2.3 Model Development 

The study model was developed within a visual programming environment, which 
is widely used in both academic and industrial contexts, particularly in urban envi-
ronmental and building performance studies. The model can be readily integrated 
with city or building geometry modeling. This approach offers the potential to tran-
scend disciplinary boundaries and support simulations of energy transitions. Also, the 
parametric interactions between design variables and objective functions are tangibly 
understandable. 

2.4 Study Case 

To represent the main archetypes of district heating networks, three representative cases 
are defined, as shown in Table 1. 

Table 1. Study case 

Case1 Case2 Case3 

Heat Generator Boiler CHP HP 

Efficiency η 0.9 0.45 (th), 0.35 (el) COP = 3.0 
Heat Carrier Steam Water Water 

Main Pipe Diameter [m] 0.250 0.200 0.150 

Supply Temp [°C] 180 100 60 

Return Temp [°C] 60 60 40
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2.5 Parameter Setting 

In this model, the tangible input parameters are the distance between the plant and 
buildings as L [m], environmental temperature as To [K], and reference temperature Tref 
[K] to calculate exergy. To simplify the model, the number of branches and layout of 
pipe are not considered. The volume of steam or water as V [m3/s] which circulates 
through the subsystems is determined to keep the velocity in the range between 2.0 and 
3.0 m/s. The range of each parameter is listed in Table 2. The material of the pipe is SUS 
(thickness = 0.014 m) with glass wool insulation (thickness = 0.06 m). The efficiency 
of the pump (η) is 0.80 constant. 

Table 2. The range of parameters 

Min Value Max Value 

Environmental Temperature To [°C] −10 20 

Reference Temperature Tref [°C] −10 20 

Distance L [m] 103 104 

Velocity v [m/s] 2.0 3.0 

3 Results and Discussion 

3.1 Exergy Balance of Each Archetype 

Figures 2, 3, and 4 illustrate the exergy input–output balance for each subsystem across 
different district heating (DH) archetypes. In each graph, the upper section represents 
the exergy input to each subsystem, while the lower section shows the exergy output 
and the exergy consumed during the processes within the subsystem. Light green bars 
represent exergy inputs to the system, including fuel supplied to the heat generator and 
electricity for circulation pumps. Light red bars indicate the exergy carried by the steam 
or water circulating within the system. Yellow bars represent exergy consumption (Xc) 
due to irreversibility in the subsystem. Purple bars represent thermal exergy caused by 
heat losses (XQloss) to surroundings. And Red bar represents the thermal exergy (XQdeli) 
delivered to buildings. In the exergy flow, the input exergy (Xin) to a given subsystem 
corresponds to the output exergy (Xout) from the preceding subsystem. 

Figure 2 is the result in case of boiler setting the values as the volume flow 190 m3/s 
(in which situation, the velocity is 3.0 m/s). The results indicate that the exergy input 
required for the pumps is relatively greater than that for the heat generator. A similar 
pattern is observed in exergy consumption, suggesting that the transfer process, espe-
cially pumping, constitutes the most significant source of exergy loss within the system. 
Figure 3 is the result in case of CHP. The setting values are the volume flow 340 m3/s 
(in which situation, the velocity is 3.0 m/s), Fig. 4 is the result in case of CHP. The 
setting values are the volume flow 190 m3/s (in which situation, the velocity is 3.0 m/s), 
Distance L as 1000 m, environmental temperature To as -5 °C, and reference temperature 
Tref as 10 °C are set as same in all cases.
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Fig. 2. Exergy balance of each subsystem (Case1: Boiler, L = 1000 m, V = 500 m3/s) 

Fig. 3. Exergy balance of each subsystem (Case2: CHP, L = 1000 m, V = 340 m3/s)
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Fig. 4. Exergy balance of each subsystem (Case3: HP, L = 1000 m, V = 190 m3/s) 

3.2 Parametric Study 

Distance Between DH Plant and Buildings 
Figure 5 shows the result of CHP case distance L is 3000 m. Compared with the result in 
Fig. 3, the required exergy input to the pumps also increases as the distance between the 
district heating (DH) plant and the buildings increases. This is due to the enlargement 
of the inner pipe surface area, which necessitates higher-capacity pumps. Consequently, 
exergy consumption caused by friction along the inner pipe surface becomes more sig-
nificant. The heat generated by this friction surpasses the heat losses through the pipe 
walls, resulting in a higher exergy output at the end of Subsystem 3. 

Volume of Heat Carrier 
Figure 6 shows the result of CHP case V is 220 m3/s. Compared with the result in Fig. 3, 
Similarly, when the volume of steam or water (V ) increases, the trend are opposite to that 
observed with increased distance. A larger volume of transfer medium leads to greater 
friction losses within the pipe and requires pumps with greater capacity. This parametric 
study indicates that exergy consumption at the pump is a major contributing factor to 
the overall exergy balance of the system. 

Environmental Temperature 
The amount of exergy changes depending on the environmental temperature (To)  as  
shown in Eqs. (1)–(4). The parametric study model can demonstrate the behavior of 
exergy balance by changing the environmental temperature. The model illustrates that
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Fig. 5. Exergy balance of each subsystem (Case2: CHP, L = 3,000 m V = 340 m3/s) 

Fig. 6. Exergy balance of each subsystem (Case2: CHP, L = 1,000 m, V = 220 m3/s)
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the total amount of exergy input and output are changed but the proportion of exergy 
balance of each subsystem is not changed.

4 Conclusions 

The results of the parametric analysis indicate that exergy consumption associated with 
pumping is a more significant contributor to overall exergy balance than the exergy loss 
through heat dissipation. Specifically, the analysis reveals that the exergy input required 
for pumps consistently exceeds that required for heat generation. The key finding is that 
the heat transfer process, particularly the pumping operation, constitutes the primary 
source of exergy loss in DH systems, underscoring the importance of optimizing this 
component to enhance overall system efficiency. 

The aim of the model is to demonstrate the interaction between study parameters 
and objective variables (exergy). The parameters which affect the quantitative amount of 
exergy are more than two, such as environmental temperature, volume of water, profile 
and insulation level of pipes, or the distance between the DH plant and buildings, etc. 
Therefore, it is hard to illustrate the exergy balance with 2D or 3D plot. The article 
describes the developed exergy balance model and proposes the way to study the behav-
iors of exergy tangibly. The key findings are that the exergy input and consumption at 
the pumps are one of the most influential factors for exergy flow in the whole system. 
The case study also indicates that the parametric study model makes it easy to capture 
the exergy behavior even if the system configuration is complicated. 
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Abstract. The increasing penetration level of renewable generation in power 
systems leads to challenges in frequency stability due to system inertia reduc-
tion. This study investigates the potential of the district heating system (DHS) 
integrated with the variable-speed heat pump to provide demand-side frequency 
response services while meeting end-user heating demands. Dynamic models are 
developed considering the thermal inertia of the DHS with the heat pump, and 
the dynamic performance is analyzed under rotational speed disturbances. The 
demand-side frequency control is proposed which regulates the supply water tem-
perature setpoint to adjust heat pump power consumption during primary and 
secondary frequency response processes. The effectiveness of the proposed con-
trol is validated through a town-level case study. Results show that the proposed 
control effectively reduces the frequency nadir and accelerates frequency recov-
ery, particularly under large load disturbances. For a step load increase of 0.25 
p.u., the frequency nadir improves from − 0.0265 p.u. to − 0.0241 p.u and the 
frequency settling time decreases from 973.2 s to 913.7 s. Additionally, the room 
temperature variation is less than 0.8 °C taking 2000 s, satisfying the acceptable 
thermal comfort criteria. 

Keywords: District heating system · Heat pump · Frequency response 

1 Introduction 

The renewable power penetration will continuously increase in power systems to meet 
various countries’ decarbonization targets. The converter-based renewable generation 
accounted for approximately 35% of electricity in the UK in 2023 and is expected 
to exceed 60% by 2035[1]. However, the increasing penetration of renewable power 
poses challenges in ensuring frequency stability, partly due to the reduction of system 
inertia. System operators are seeking additional sources for frequency regulation beyond 
the traditional synchronous generators. One promising alternative is the demand-side 
response, which is widely considered a means of providing ancillary service [2]. 

Heating systems constitute a growing portion of the total load in power systems. Their 
inner energy storage capacity and thermal inertia can offer the potential for demand-side 
flexibility, for individual and district heating systems. Many researchers have conducted
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related research on the district heating system (DHS) with the combined heat and power 
unit (CHP). Xu et al. [3] developed a methodology to quantify the maximum flexibility 
of DHS with CHP by decomposing them into subsystems and considering thermal inertia 
and transport delays. Li et al. [4] studied the CHP-coupled DHS and proposed a model to 
use thermal inertia for cost reduction and wind power integration. Dai et al. [5] modeled 
the heat network with the consideration of heat transfer limitation. 

With the growing trend of heating system electrification, the heat pump becomes 
a popular and efficient technology to utilize low-temperature heat while reducing the 
water circulation temperature. Many studies investigated the capability of heat pumps 
to support the frequency response at different levels. Kim et al.[6] developed a dynamic 
model of the variable-speed heat pump in a commercial building for secondary frequency 
regulation by responding to direct load control. Rasmussen et al. [7] indicated that large-
scale heat pumps can provide primary frequency support via local droop and inertia 
control. They also proposed model predictive control coordinated primary frequency 
control of large-scale and small-scale heat pumps [8]. However, most of the previous 
studies simplified the heat pump dynamic behaviors into constant transfer functions or 
empirical fitting curves, which did not fully reflect the nonlinear dynamic behaviors of 
heat pumps. Song et al. [9] modeled the non-linear power response of the air-source heat 
pumps and proposed a fast frequency response scheme using them, but its impact on the 
heating system was not considered. 

Heat pump-driven DHS as a demand-side resource has great potential to participate 
in the frequency response while respecting the end-user heating demand. However, to 
the best of the authors’ knowledge, the aforementioned previous studies mainly focused 
on heat pump dynamics and DHS operation with CHP, while integrated modelling and 
analysis of heat pump-driven DHS for frequency response have not been sufficiently 
addressed. The thermal inertia of the heat-pump-driven DHS requires further assess-
ment, and the control of such systems for primary and secondary frequency response 
should be further explored. Therefore, this paper develops dynamic models of the DHS 
integrated with the variable-speed heat pump, describing the interaction between thermo-
dynamic and electrical processes. A demand-side frequency control strategy is proposed 
which adjusts heat pump power consumption in response to grid frequency deviations by 
regulating the supply water temperature, thereby providing both primary and secondary 
frequency responses. The effectiveness of the control is validated through a case study 
of a town-level integrated energy system. 

2 Model Development 

2.1 System Description 

Figure 1 describes the integration of a DHS and the distribution grid. The DHS contains 
the centralized heat pump system, the secondary-network (SN) water supply and return 
pipes and the heat users. In this study, the heat pump system replaces the secondary heat 
exchange station of the conventional heating system, which directly provides the hot 
water as the heat source for the heat users.
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Fig. 1. Diagram of the integration of the electrical and district heating system 

2.2 Dynamic Model of the Heat Pump 

The variable-speed heat pump supplies heated water to the DHS by extracting heat 
from low-temperature heat sources. As shown in Fig. 2, the heat pump consists of an 
evaporator, condenser, compressor and throttle valve. In the evaporator, the refrigerant 
absorbs heat from the air or water and transforms into superheated vapor. The enthalpy 
and pressure of the superheated refrigerant continue to increase in the compressor. Then, 
the heat is transferred to the cold water in the condenser. Finally, the cooled refrigerant 
flows back to the evaporator through the throttle valve. 

Fig. 2. General construction of the variable-speed heat pump 

Model of Evaporator/Condenser 
To capture the nonlinear speed-power response of the heat pump, the moving boundary 
method is used to model the evaporator and the condenser. The refrigerant flows through 
different regions (eg. Two-phase and superheated zones) and the boundaries between 
these regions shift according to the variations in heat transfer, mass flowrate and pressure. 
One-dimensional flow is assumed, with negligible pressure drop. R134a is applied as 
the refrigerant in this study. 

The model approach for the evaporator and condenser is similar, differing in the order 
of the two-phase and superheated regions. Due to the space limitation, the evaporator 
model is explained here as an example. The inlet refrigerant of the evaporator is assumed 
to be the saturated mixture of liquid and vapor. The evaporator model is developed based 
on the mass conservation of the refrigerant, and energy conservations of the refrigerant
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and pipe metal wall [9], expressed as: 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

Ain - c
∂ρre

∂t 
+ ∂mre 

∂x 
= 0 

Ain - c 
∂(ρrehre − p) 

∂t
+ ∂(mrehre) 

∂x
+ kinAin - s(Tre − Twe) = 0 

cweρwe(Aout - c − Ain - c) 
∂ Twe
∂t 

= kinAin - s(Twe − Tre) + Aout - skout(T0 − Twe) 

(1)

where ρre is the refrigerant density, kg·m−3; mre is the mass flowrate of the refrigerant, 
kg·s−1; p is the pressure, Pa; hre is the enthalpy of the refrigerant, J·kg−1; T re, Twe and 
T0 are the temperatures of the refrigerant, the metal wall and the low-temperature heat 
source, K; Ain-c and Ain-s are the cross-section and surface areas of the inner pipe, m2; 
Aout-s is the pipe outer surface area, m2; kin and kout are heat transfer coefficients of 
the metal wall to the refrigerant and to the heat source, W·K−1; cwe is the specific heat 
capacity of the metal pipe wall, J·(kg·K)−1; ρwe is the metal pipe wall density, kg·m−3. 

The partial differential equations are integrated over the two-phase and superheated 
regions, respectively, and subsequently converted to the differential algebraic equations 
that can be solved directly. The energy and mass conservation of water are considered 
in the condenser as well. 

Model of Compressor 
The compressor stage is modeled as a standard isentropic compression process. The 
mathematical model of the compressor [9]  is  a  s:

mcp = ωcpVcpρcpηcp (2) 

hcp - out = K1RTcp - in 

K1 − 1 

⎡ 

⎣ pcp - out
pcp - in 

K1−1 
K1 − 1 

⎤ 

⎦ + hcp - i n (3)

PHP = mcp hcp - out − hcp - in (4) 

where mcp is the refrigerant flowrate through the compressor, kg·s−1; V cp is theoret-
ical volume displacement per revolution, m3·s−1; ρcp is the refrigerant density at the 
compressor inlet, kg·m−3; ηcp is the compressor gas transmission coefficient; hcp-in and 
hcp-out are the refrigerant enthalpy at the compressor inlet and outlet, J·kg−1; K1 is an 
empirical constant; R is the gas constant, 8.314 J·(mol·K) −1; pcp-in and pcp-out are the 
inlet and outlet pressures, Pa; T cp-in is the inlet refrigerant temperature of the compressor, 
K; PHP is the power consumption of the compressor, W. 

Model of Throttle Valve 
The throttle valve follows the Bernoulli’s principle. The model [10] is expressed as: 

mvlv = Cvlv ρvlv(pvlv - out − pvlv - in) (5) 

hvlv - out = hvlv - in (6)
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where mvlv is the mass flowrate of the throttle valve, kg·s−1; Cvlv is the flow characteristic 
parameter; ρvlv is the refrigerant density at the inlet of the valve, kg·m−3; pvlv-in and 
pvlv-out are the inlet and outlet pressure at of the throttle valve, Pa; hvlv-in and hvlv-out are 
the refrigerant enthalpy at inlet and outlet of the throttle valve, J·kg−1. 

Model of Electrical Drive System 
The electrical drive system has the permanent magnetic synchronous machine connecting 
to the compressor shaft and driven by the AC-DC-AC power converters. The rotational 
speed is controlled. As the electrical drive system responses much quickly than the 
thermal system, detailed internal states and switching are not considered. The transfer 
function method is applied to describe the response of the rotational speed to a given 
setpoint [9]. 

2.3 Dynamic Model of the District Heating System 

In the secondary heat network, the hot water produced by the heat pump is delivered to 
the heat-users through pipelines. To assess the thermal inertia of the heat-pump driven 
district heating network, it is necessary to consider not only the heat pump but also the 
heat demand and storage of the buildings and pipelines. 

Model of Building 
Considering the heat storage and demand of the buildings, the building model consists 
of the radiator, rooms and the envelope structure [11]. The model is developed based on 
the energy balance equations, which are as: 
⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

C d
dTw
dt 

= cwmw(Twin − Twout) − kdAd( 
Twin + T wout

2
− Trm) 

Crm 
dT rm
dt = kdFd( Twin+Tw out

2 − Trm) − kwliAwli(Trm − Twl) − kenAen(Trm − T0) 
Cwl

dTwl
dt = kwliAwli(Trm − Twl) − kwloAwlo(Trm − T0) 

(7)

where Cd, Crm, Cwl are the aggregated heat capacities of the radiator, rooms, and room 
walls, J·K−1; cw is the specific heat capacity of water, J·(kg·K)−1; mw is the water 
mass flowrate through the radiator, kg·s−1; Tw, Twin and Twout are the water average 
temperature in the radiator, supply water temperature and return water temperature, 
K; T rm, Twl and T0 are the temperatures of the inside room, room wall, and outside 
environment, K; kd, kwli, ken and kwlo are the heat transfer coefficients of the radiator, 
inner wall, window, and outer wall of the room, W·K−1; Ad, Awli. Aen and Awlo are the 
heat transfer areas of the radiator, inner wall, window, and outer wall of the room, m2. 

Model of the Pipe Network 
The pipe network is modeled as the combination of pipe elements and water mixture 
nodes, which can represent the network constructed by the direct buried laying method. 
Each pipe element consists of the metal wall and thermal insulation layer. As water 
flows through the pipes, heat is transferred to the wall and subsequently dissipated to
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the surrounding soil. The energy balance equations of the pipelines are as: 
⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

C pip
dTpout
dt

= cwmp(Tpin − Tpout) − kpipApip( 
Tpin + Tpout

2
− Tm) 

Cm 
dT m
dt 

= kpipApip( 
Tpin + T pout

2
− Tm) − Tm − T so

Rm + Rso 
(1 + α) · Lp 

(8)

where Cpip and Cm are the heat capacities of the pipe and the metal wall of the pipe, 
J·K−1; Tpin and Tpout are the temperatures of the inlet and outlet water of the pipe, K; 
Tm is the metal wall temperature of the pipe, K; kpip is the pipe heat transfer coefficient; 
Apip is the heat transfer area of the pipe, m2; T so is the soil temperature around the pipe, 
K; Rm and Rso are the thermal resistances of the thermal insulation layer and the soil, 
(m·K)·W−1; α is the conversion coefficient; Lp is the pipe length, m.

The water mixture node is modeled as: 

Twmix = 1 

mw i 

Twimwi (9) 

where Twmix is the water temperature of the mix backwater pipe, K; Twi is the temperature 
of the outlet water of the ith user radiator, K; mwi is the mass flowrate of the water through 
the ith user radiator, kg·s−1. 

2.4 Demand-Side Frequency Response 

As shown in Fig. 3, the conventional thermal power generators are initially considered 
as the main assets to regulate the grid frequency in this study. Primary frequency control 
is implemented through droop control, while secondary frequency control is achieved 
via automatic generation control (AGC). α1 and (1-α1) are the proportion factors of heat 
pump and generator in secondary frequency control, which assume 0.5 in this study. The 
equivalent grid model [12] is simplified as the transfer function Ggd: 

Ggd = 1 + FHPTRHs 

(1 + TSTs)(1 + TRHs)(1 + Tgs) (10 )

where TST and TRH are the steam turbine and reheater time constants; Tg is the reheater 
gain; FHP is the generator governor constant. D and M represent the load damping 
coefficient and the rotational inertia of thermal power units, respectively. ΔPL(s) and 
Δf (s) are the load disturbance and frequency deviation, respectively. 

The heat pump is proposed as a demand-side frequency response unit participating in 
both primary and secondary frequency responses by regulating its power consumption. 
The heat pump power is controlled by adjusting the rotational speed. The set point of 
the rotational speed (ω*) is determined by a PID controller based on the supply water 
temperature deviation between the real value and setpoint (T* 

sup). T* 
sup responds to the 

aggregation signal of the droop and AGC control. The PID controller gains can initially 
obtained by Ziegler-Nichols tuning method under step disturbance.
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Fig. 3. Demand-side frequency response model based on heat-pump driven DHS 

3 Results and Discussion 

In this section, the dynamic performance of a town-level DHS with heat pump is studied 
and the effectiveness of the proposed demand-side frequency control is analyzed. The 
nadir and frequency settling time are used to assess the frequency stability. 

3.1 Dynamic Performance of Heat Pump and Heat Network 

Heat Pump 
Due to the thermal inertia of the heat pump, the temperature of the generated hot water 
cannot change transiently. The rotational speed (ω), as the regulating measure to adjust 
heat pump power consumption, influences the dynamic performance of the heat pump. 
The main parameters of the heat pump are shown in Table 1. 

Table 1. Main parameters of the heat pump. 

Parameter Value Unit Parameter Value Unit 

Rated Power 760 kW COP 3.49 -

Evaporator Pressure 225.5 kPa Condenser Pressure 1491.5 kPa 

Heat source temperature 10 °C Cold water temperature 25.0 °C 

Evaporator/Condenser length 15 m Hot water temperature 50.2 °C 

Evaporator refrigerant flowrate 15.53 kg·s−1 Condenser refrigerant flowrate 15.53 kg·s−1 

Compressor rotational speed 3000 r·min−1 Water flowrate 25.1 kg·s−1 

Figure 4 shows the dynamic performance of the heat pump under rotational speed 
disturbances. When ω step increases or decreases at 500 s, the outlet hot water tempera-
ture increases or decreases accordingly with a gradually decreasing rate. The outlet hot 
water temperature changes from 50.2 °C to between 41.4 °C and 52.0 °C as ω changes 
within the range of − 50% to + 15%. As shown in Fig. 4 (b), the settling time increases 
with the rotational speed change ratio, ranging from 80.9 s to 129.0 s.
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As shown in Fig. 4 (c), when ω step increases, the heat pump power consumption 
increases rapidly at first and then gradually to a new steady-state value higher than the 
initial level. The power consumption changes faster than the hot water temperature, 
which provides the potential for heat pumps to participate in the frequency response 
service with minimal impact on the heat network water supply. When ω varies − 50% 
~ + 15%, the power consumption variation ranges between − 368.0 kW and 94.3 k W.

Fig. 4. Dynamic performance of the heat pump under step rotational speed disturbances (a) hot 
water temperature (b) settling time (c) power consumption 

District Heating System with Heat Pump 
The heat pump provides the hot supply water for a town-level DHS, whose rated heat 
load is 2.66 MW. The main DHS parameters are shown in Table 2. 

When the rotational speed step changes, due to the working medium and heat storage 
of the heat pump, building and pipelines, the room temperature changes gradually with 
a transient period. Settling time is the indicator to assess the time taking for room 
temperature changing from the initial state and the final state. Figure 5 compares the 
final room temperature and its settling time when rotation speed step decreases by 5%
-30%. It can be shown that the final room temperature can be kept above 18 °C if the
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Table 2. Main parameters of the DHS with heat pump. 

Parameter Value Unit Parameter Value Unit 

Supply water temperature 50.2 °C Diameter of the network pipe 0.126 m 

Return water temperature 25.0 °C Total length of the network pipe 1600 m 

Flowrate of supply water 25.1 kg·s−1 Rated room temperature 20 °C 

rotational speed changes by less than 25%, while the settling times in such cases range 
between 2201.1 s and 3322.8 s. 

Fig. 5. Final room temperature and settling time of the DHS when rotational speed step changes 

3.2 Frequency Stability Improvement Using Heating System with Heat Pump 

This section tests the ability of the DHS with heat pump in demand-side frequency 
response process and its impact on the heat users. Assuming the heat pump connects to a 
distribution electrical system, the maximum total load consumption is 4720 kW. At the 
benchmark condition, the heat pump and other load power consumptions are 760 kW 
and 2960 kW, respectively. The generation capacity is 5700 kW (generation margin: 
20% of total demand). The base value of the frequency is 50 Hz. 

Figure 6 compares the frequency responses under load step disturbances of 0.05 
p.u. – 0.25 p.u. with and without the proposed frequency control of heat-pump driven 
DHS. In reference cases, only synchronous generators (SG) regulate the frequency. 

As shown in Fig. 6 (a), when the load step increases at 3000 s, the frequency devi-
ation drops first and then recovers to zero. The maximum frequency deviation (called 
nadir) is effectively reduced by the heat-pump driven DHS, as the proposed control 
decreases the heat pump power consumption by reducing the water supply temperature 
responding to negative frequency deviations. The absolute value of the nadir increases 
with the load disturbance magnitude. Figure 6 (b) summarizes the frequency nadir 
and settling time. The heat pump better reduces the frequency deviation when larger 
disturbances happen. The nadir improves from − 0.53 × 10−2 p.u. and − 2.65 × 10−2
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Fig. 6. Frequency response comparisons with/without demand-side response under load step 
disturbances (a) frequency response curves (b) Frequency nadir and settling time comparisons 

p.u. to − 0.48 × 10−2 p.u. and − 2.41 × 10−2 p.u., when the load step increases by 0.05 
p.u. and 0.25 p.u., respectively. Further, the proposed demand-side frequency control 
reduces the settling time for frequency deviation recovering to zero. The settling time 
decreases from 543.7 s – 973.2 s to 490.5 s – 913.7 s. 

Figure 7 shows the final value and settling time of the room temperature under 
the above load step increase disturbances. When DHS with heat pump participates in 
frequency regulation, the final room temperature decreases and the settling time increases 
with the disturbance magnitude, as the water supply temperature is controlled to decrease 
when the frequency deviation is negative. The final room temperature decreases from 
20 °C to 19.8 °C and 19.2 °C in 797.5 s and 1972.7 s. All the simulated cases satisfy 
the requirement of human thermal comfort defined in ASHRAE 55 that the acceptable 
temperature ramp should limit to 1.1 °C within 1 h. 

Therefore, the demand-side frequency control by heat-pump driven DHS can 
effectively enhance the overall frequency stability and guarantee the user thermal 
comfort. 

Fig. 7. Impact of the demand-side frequency response on the room temperature
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4 Conclusion 

In this study, a heat-pump driven DHS as a demand-side resource is used to participate 
in frequency response while respecting the end-user heating demand. The dynamic 
model of the DHS with variable-speed heat pump is developed considering its thermal 
inertia. Dynamic performance of the heat pump and DHS are analyzed. The demand-side 
frequency control is proposed to enhance the frequency stability and the effectiveness 
is verified by a town-level case study. Main conclusions are as follows. 

(1) When the rotational speed step decreases, the outlet hot water temperature of the 
heat pump drops at a gradually decreasing rate. The room temperature changes more 
slowly due to the thermal inertia of the heat pump, building and pipelines. 

(2) Regulating the rotational speed, depending on the control of the supply water tem-
perature, enables the heat pump to participate in primary and secondary frequency 
response. The proposed demand-side frequency control effectively reduces the nadir 
and accelerates frequency recovery, especially for large disturbances. The nadir is 
improved from − 2.65 × 10−2 p.u. to − 2.41 × 10−2 p.u and the frequency settling 
time is shortened from 973.2 s to 913.7 s under step increase load disturbance of 
0.25 p.u. 

(3) The heat-pump driven DHS can effectively enhance the frequency stability while 
guaranteeing the user thermal comfort. Under load disturbance ranging from 0.05 
p.u. and 0.25 p.u., the room temperature variation is less than 0.8 °C taking 2000 s, 
which is within the acceptable temperature ramp (1.1 °C within 1 h). 
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Abstract. This study explores sustainable energy renovation strategies for a con-
gregation building in southern Sweden using a parametric optimization approach 
to balance passive and active measures. Passive measures include envelope and 
window improvements and leakage control, while active measures involve photo-
voltaic integration and ventilation enhancements. The renovation aims to optimize 
energy use, thermal comfort, indoor air quality (IAQ), life cycle cost (LCC), and 
life cycle assessment (LCA). However, individual measures often conflict with 
other objectives. By integrating the optimization tool Opossum with ClimateStu-
dio, which simulates energy, thermal, and photovoltaic panels (PV) performance, 
along with programmed LCC and LCA calculations, the study identifies optimal 
solutions. Results indicate a 24% energy reduction, 23% lower LCC, and 47% less 
CO2 emissions without changing the existing ventilation system, though IAQ and 
comfort remain inadequate. With new ventilation, energy use increases, LCC rises 
by 53%, but CO2 emissions reduce by 11%, resolving IAQ issues and improving 
comfort by 74%. The study acknowledges limitations due to data assumptions and 
simulation constraints; future work could include full building LCA and moisture 
assessments to enhance the findings. 

Keywords: Energy renovation · Parametric optimization · Life cycle costing · 
Photovoltaic systems · Life cycle assessment 

1 Introduction 

The European Union (EU) aims to achieve climate neutrality by 2050, with an interim 
target of reducing GHG emissions by at least 55% by 2030 compared to 1990 levels 
[1]. Sweden, in particular, has committed to achieving net-zero emissions by 2045, 
one of the most ambitious climate targets globally [2]. Given that buildings account 
for approximately 40% of the EU’s energy use and 36% of its CO2 emissions, the 
transformation of the sector is imperative [3].
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Over 50% of buildings in Sweden and the EU are over 40 years old, with ~75% of 
the EU’s stock being energy inefficient, underscoring the need for renovation to meet 
climate targets [3]. Older buildings typically exhibit poor insulation, high levels of air 
leakage, and inefficient energy systems. Without significant intervention, the building 
sector risks failing to meet the climate neutrality goals of both the EU and Sweden. 
In response, the EU launched the Renovation Wave initiative, which aims to renovate 
35 million buildings by 2030, with the goal of reducing building-related emissions by 
60% and lowering energy consumption by 14% [4]. In Sweden, the national strategy 
includes investments through the Recovery and Resilience Plan, as well as programs 
such as Klimatklivet, which focus on improving energy efficiency and decarbonizing the 
building stock [5]. 

Achieving climate-neutral cities necessitates a paradigm shift in the renovation 
of existing buildings, particularly through the integration of life cycle thinking and 
decarbonization strategies. Energy renovation is especially critical in cold climatic 
regions, where space heating accounts for a significant portion of energy use. However, 
the embodied carbon associated with energy efficiency measures presents a potential 
trade-off, emphasizing the need for sustainable, low-carbon renovation approaches. 

Furthermore, renovation strategies in cold climates often prioritize winter thermal 
comfort, resulting in thermal discomfort during summer months [6, 7]. A significant 
portion of older Swedish buildings also lack active ventilation systems, contributing to 
poor indoor air quality [8]. Previous studies have predominantly focused on improving 
energy performance and reducing GHG emissions, frequently overlooking the indoor 
environmental quality [9, 10]. Additionally, the integration of renewable energy sys-
tems and energy storage technologies in retrofits has been identified as a research gap 
[10]. Addressing these challenges requires interdisciplinary research to develop holistic 
renovation strategies that combine emissions and cost reduction with improvements in 
indoor environmental quality. 

This study investigates energy renovation strategies for a congregation building 
located in southern Sweden, with a particular focus on solar energy integration. The 
case study involves a two-story parish house with a basement, affiliated with the Västra 
Karup Church in Båstad Municipality, Skåne County. The geographical coordinates of 
the site are 56.4117057°N, 12.7426024°E. The objective is to evaluate combinations of 
energy efficiency and renewable energy measures that minimize energy consumption, 
reduce life cycle CO2 emissions and costs, and enhance indoor environmental quality. 

2 Methodologies 

The workflow in Fig. 1 began with model verification, active and passive measures for 
alternative inputs into energy renovation. Based on the simulation results and objectives, 
the optimizer cycled through all the possible energy renovation scenarios to find the 
optimal cases. 

Rhino 7 and ClimateStudio tools inside Grasshopper were utilized to create the geo-
metrical and thermal models [11, 12]. Assumptions of building construction and usage 
were based on a site visit, and the model was verified against one year of actual electricity 
usage. Thermal comfort was assessed using the same tool, assuming a metabolic rate of
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Fig. 1. Workflow stages: base case verification (grey), improvement of input data (yellow). 
Optimizer iteration cycle and optimized combination (green). (Color figure online) 

1.2 MET and dynamically adjusted clothing insulation. Several energy-efficient mea-
sures were considered to reduce the building’s energy consumption. Measures included 
reduction of transmission losses through the building envelope, through windows, and 
also reduction of infiltration losses. A new ventilation system was considered to mitigate 
poor IAQ and to comply with local regulations. Furthermore, photovoltaic systems were 
considered for the integration of green electricity generation. 

2.1 Passive Measures 

Envelope insulation was chosen based on which options would be least invasive to the 
exterior building architecture, due to possible cultural protection limitations. However, 
moisture aspects as well as applicability were also taken into consideration. The sugges-
tion was to insulate the preexisting concrete constructions in the cellar and crawlspaces 
(see Fig. 2) with inputs in Table 1. The exterior placement was deemed necessary due 
to the existing moisture problems currently limiting the cellar space usage. The chosen 
insulation material was motivated by its combined capillary breaching, draining, and 
insulating properties [13]. 

Two options were suggested for window improvements, as stated in Table 2. Upgrad-
ing the existing two-pane windows with an extra pane was considered sustainable due 
to the extended lifespan. While the interior energy glass would decrease transmission 
losses, infiltration would also be limited since covering all mullions and glasses with one 
whole pane is financially motivated. Window renovation could be hard to estimate due 
to existing conditions, and it was therefore compared to new window replacements. The 
new window was assumed based on a non-openable model, which should be considered 
a best-case scenario for thermal performance. The need for emergency evacuation and 
natural ventilation would need to be taken into consideration. 

An average infiltration leakage of 1.30 l/s/m2 (at 50 Pa) was calculated based on 
measured CO2 decay, which was, however, also validated by a statistical analysis [16]. 
The statistical analysis estimated an average leakage of 1.27 l/s/m2 (at 50 Pa). Several 
literature studies showed that leakage could be reduced by up to 55% by regular leakage 
control measures. Within those studies, common measures were sealing of window and
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Fig. 2. Placement of envelope insulation measures. The left side shows a section of the kitchen 
with insulation on the crawl space floor. The right side shows the section through offices with 
insulation and drainage of cellar walls. 

Table 1. Overview of construction thermal performance input data for insulation measures. 

Alternatives Cellar wall Crawlspace wall Crawlspace roof 

U-value 
W/m2/K 

U-value 
W/m2/K 

U-value 
W/m2/K 

Existing 0.544 0.544 3.509 

Insulation 0.1 m 0.213 0.213 0.321 

Insulation 0.2 m 0.134 0.134 0.170 

Table 2. Overview of window performance inputs for the base case and renovation. 

Alternative U-value 
W/m2/K 

G-value T-vis Source 

Existing 2.69 0.703 0.774 [11] 

Upgrade 1.30 0.616 0.688 [14] 

Replacement 0.91 0.530 0.740 [15]

door frames, but also building envelope penetrations due to cracks or building services. 
Draught-proofing measures to the external building envelope are comparatively cost-
effective [17]. Self-expanding polyurethane foam and sealing tapes were considered 
for sealing. Considering the similar leakage-controlling measures taken in the studies 
mentioned in Table 3, reduction of 25% and 50% leakage was estimated for this study. 
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Table 3. Leakage reduction studies with respective potential for reduction. 

Source Year Number of buildings Location Leakage reduction Remarks 

[18] 2024 1 Spain 44% – 

[17] 2016 1 UK 52% – 

[19] 2011 11 UK 50% Highest 

[20] 2003 26 UK 55% Highest 

[21] 1998 465 US 25% Average 

2.2 Active Measures 

Since the building was unequipped with solar energy generation, PV systems with var-
ious capacities were considered along with optional storage (battery) systems. The PV 
production was simulated using ClimateStudio, and the hourly production data was used 
for parametric analysis for system optimization [11]. The southern part of the roof had 
a slope of ~47°, an azimuth of 15° (South-East), and a tree shading from the south 
side. For impact assessment, a shading analysis was performed with Ladybug tools in 
Grasshopper [22]. The analysis showed considerable shading problems on the proposed 
PV module placement, especially during winter when the solar altitude is low. With PV 
optimizers, it would be possible to mitigate the shading effects on the whole system. 
However, the tree was assumed to be cut down to eliminate the shading problem. The PV 
production outputs were then validated by comparison with simulations in SAM (The 
System Advisor Model) [23]. The surplus energy produced from PV, after deducting the 
building’s use, was considered to be sold to the grid. Therefore, a grid-tied solar system 
was designed. 

The building was equipped with a mechanical exhaust ventilation system without 
heat recovery, and only one office on the top floor had a supply and exhaust room unit 
with heat recovery. The system was, however, quite small, while the building was facing 
serious IAQ issues. Measurements of CO2 concentrations were collected for 54 days 
to evaluate the quality of indoor air. According to the design of the Swedish workplace 
regulation (AFS 2020:1), it should not exceed 1000 ppm [24]. The measurements showed 
that the CO2 threshold exceeded 44.4% of the days in the main hall, compared to 16.7% 
and 14.8% in the top-floor offices and the basement, respectively. To ensure good IAQ, a 
mechanical supply and exhaust with heat recovery (FTX) was proposed in this study. Two 
different FTX systems were proposed: a demand-controlled ventilation (DCV) system 
and a constant air volume (CAV) system. According to the Swedish Housing Authority’s 
building regulation (BBR29) and AFS 2020:1, a minimum air supply of 0.35 l/s/m2 and 
7 l/s per person should be provided [24, 25]. The airflow requirement in each room 
was calculated according to the regulations and the regular occupancy schedule. The 
existing exhaust ducts were reused, aiming for a cost-effective solution. The size of the 
ducts, associated pressure drops, and velocity according to the airflow were calculated 
using the ASHRAE circular duct chart [26]. The specific fan power (SFP) was calculated 
from the pressure drop, airflow, and the efficiency of the system. The Swedish Energy
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Agency’s network for energy-efficient premises (BELOK) suggested limiting the SFP 
to 1.3 kW/m3/s, and BBR29 suggested limiting it to 1.6 kW/m3/s [25, 27]. Therefore, 
the goal was to design an energy-efficient ventilation system to comply with those 
regulations, including the CO2 limit. 

2.3 Life Cycle Cost 

The LCC was calculated using the net present value (NPV) method with the following 
Eqs. (1)–(3). 

LCC = 
I 

i=1 

NPVi (1) 

NPV of expenditure occurring after n years – 

NPVi = Ci/(1 + rdi)n (2) 

NPV of a recurring cost that happens at the end of every year until year N – 

NPVi = Ci · ((1 + rdi)N − 1)/ rdi · (1 + rdi)N (3) 

where: 

LCC = life cycle cost [SEK] 
NPVi = net present value [SEK] 
n = number of years after which the one-time cost occurs [years] 
N = total number of years the recurring cost is incurred [years] 
Ci = expenditure in today’s value [SEK] 
rdi = discount interest rate [%] 

The material and manpower costs were collected from Wikells Sektionsfakta and 
validated with the quotations collected from different vendors [28]. Costs for primary 
and secondary material, equipment, manpower, project management, including adminis-
tration and associated VATs, were considered. The costs for investment, annual mainte-
nance, periodic maintenance, and replacement were calculated using the Excel program. 
The NPV and LCC calculations were programmed in the energy simulation script in 
Grasshopper and used for parametric optimization. The scrap or the end-of-life value of 
the materials was excluded from the LCC. 

Discount interest rates (Table 4) were estimated for specific items to get a fair result. 
Initially, historical data for material price change was collected, and then future price 
changes were estimated following the price indexes. The inflation rate was considered 
2.56%, taking the last 35 years’ average inflation in Sweden, according to Statistics 
Sweden [29]. A nominal interest rate of 2.40% was considered according to Swedbank’s 
one-year fixed interest rate [30]. A sensitivity analysis was carried out considering a 
nominal interest rate of 3.90%, 2.40%, and 0.90% due to the uncertainty of the future 
financial scenario.
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The hourly electricity spot prices for 2023 were collected from Energi Data Service 
to estimate the operational energy cost of the building [31]. The monthly average spot 
prices were compared to the actual energy bills of the building, and an average variation 
of 6% was found. However, hourly prices were not available in the energy bills, and the 
data from Energi Data Service were considered in the calculation. Due to the significant 
fluctuations in the electricity price index, four different nominal price changes (1.0%, 
0.5%, 0%, and −0.5%) were considered for a sensitivity analysis, and a 0.5% nominal 
price change was used in the parametric simulation. The electricity buying prices from 
the grid and selling prices to the grid were calculated on an hourly basis according to 
the following Eqs. (4) and (5). 

Electricity buying price 

= Spot price + Energy tax + Transmission fee 
+ Electricity certificate fee + VAT (4) 

Electricity selling price = Spot price + Grid benefit + Tax deduction (5) 

Table 4. Discount interest rates for life cycle cost calculations. 

Material Insulation Window PV System 

rdi/% 1.39 0.89 3.64 

Material Li-ion Battery Foam Sealant HVAC Materials 

rdi/% 7.79 3.64 1.39 

Estimated life cycle costs for each energy renovation measure are given in Table 5. 

Table 5. Estimated life cycle costs for each energy renovation measure. 

Description Alternatives Investment Maintenance Life Span 

Annual Periodic 

SEK SEK/year SEK/years /Year 

Insulation Cellar wall 0.1 m 148 000 – – 50 

0.2 m 160 000 – – 50 

Insulation Crawlspace 0.1 m 40 000 – – 50 

0.2 m 71 000 – – 50 

Window Upgrade 153 000 – 42 000/8 25 

Replacement 395 000 – 4 000/10 40 

Infiltration 
Reduction 

25% 27 000 – 13 500/10 40 

50% 27 000 – 13 500/5 40

(continued)



138 M. Parvaz et al.

Table 5. (continued)

Description Alternatives Investment Maintenance Life Span

Annual Periodic

SEK SEK/year SEK/years /Year

Ventilation DCV 554 000 10 000 20 000/5 40 

CAV 445 000 6 000 12 000/5 40 

PV 10 kWp 143 500 – – 40 

18 kWp 270 500 – – 40 

Battery 10 kWh 50 000 – – 10 

20 kWh 100 000 – – 10 

2.4 Life Cycle Assessment 

Aiming for the climate neutrality goal of Sweden by 2045, the Global Warming Potential 
(GWP) was assessed for the energy renovation measures and associated operational 
energy use. The environmental product declaration data (EPD) of primary materials 
were collected from several EPD databases. The GWP potential related to operational 
energy use was collected from the ELCD database [32]. The LCA was completed for a 
building lifespan of 40 years from now matching the lifespan of most of the products and 
systems. A cradle-to-grave model considering the product stage (A1–A3), construction 
stage (A4–A5), use stage (B1–B6), and end-of-life stages (C1–C5) was used for the 
assessment. The GWP for each item was first calculated in Excel, and the rest of the LCA 
was programmed in Grasshopper, which was later connected to parametric simulation 
for optimization. 

2.5 Parametric Optimization 

There were seven different potential improvement categories with three alternatives each, 
as mentioned in Table 6. There were also four different objectives – energy use intensity 
(EUI), LCC, LCA, and thermal comfort. Working with an individual variable could lead 
to a contradictory output for various objectives. Therefore, it was necessary to consider 
all 2 187 possible combinations to get the exact scenario which would help to evaluate 
the most optimized combinations and decision making. This parametric optimization 
was done using Opossum, an open-source Grasshopper plugin [33]. 

Table 6. Parameter optimization variables. 

Parameters Alternatives 

Insulation – Cellar wall 0  m 0.1 m 0.2 m 

Insulation – Crawlspace 0  m 0.1 m 0.2 m

(continued)
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Table 6. (continued)

Parameters Alternatives

Window Existing Upgrade Replacement 

Infiltration Reduction 0% 25% 50% 

Ventilation Existing DCV CAV 

PV N/A 10 kWp 18 kWp 

Battery N/A 10 kWh 20 kWh 

2.6 Regulations and Environmental Certification 

Buildings with a floor area of more than 250 m2 that are frequently visited by the 
public are recommended to have an energy declaration in Sweden [25]. The declaration 
provides information on the building’s primary energy use and energy class (A–F). The 
primary energy number (EPpet) was calculated according to BBR29 [25]. Additionally, 
the building was studied for environmental certification, Miljöbyggnad 4.0 [34]. To 
get a gold certification in “indicator 3 – energy use”, the requirements are to limit the 
EPpet within 70% of the BBR recommendation, and more than 5% of the property 
energy should be locally generated with renewable energy. For silver rating, the EPpet 
requirement is 80% and for bronze, the BBR requirement should be met at least. There 
are no renewable energy requirements for silver and bronze. 

3 Results and Discussion 

3.1 Parametric Optimization 

Based on the simulation results and objectives, the optimizer cycled through all the 
possible energy renovation scenarios. Of the 2 187 cases considered, 112 combinations 
were suggested by the optimizer, with the rest deemed worse by the optimizer algorithm. 
Figure 3 shows the LCA vs. LCC for each simulated case. Thermal comfort was evaluated 
as the percentage of people dissatisfied (PPD). Clustered in red are the cases with worse 
thermal comfort and consequently lower EUI, LCC, and LCA. Yellow and orange cases 
had better thermal comfort, with higher EUI, LCC, and LCA. Figure 4 illustrates the 
ventilation system installed in each of the simulated cases, with the current system both 
better in terms of LCC and LCA, but at the cost of thermal comfort, as seen in Fig. 3.  As  
evident by comparing Fig. 3 and 4, cheaper cases in terms of both LCC and LCA did not 
have a new ventilation system installation, and more resource-intensive cases did. All 
cases with better thermal comfort and good IAQ had a new ventilation system installed.
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Fig. 3. LCA vs. LCC with color as thermal comfort (lower is better) and point size as the EUI. 
Each point represents a simulated case. Recommended cases are circled. 

Fig. 4. LCA vs. LCC with color as the ventilation system type and point size as the EUI. Each 
point represents a simulated case. Recommended cases are circled. 

Fig. 5 analyses the PV system of each case simulated. The lower cluster with the 
current ventilation system highly preferred the larger system without a battery, while the 
higher cluster with new ventilation systems preferred the larger system, but both without 
and with the smaller battery.
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Fig. 5. LCA vs. LCC with color as PV system. Each point represents a simulated case. 
Recommended cases are circled 

3.2 Sensitivity Analysis 

Figure 6 explores the effect of the yearly price increase of electricity being different from 
what was considered during the life cycle costing. As expected, the lower cluster was 
less sensitive to price increases due to less operational electricity use. Figure 7 illustrates 
the impact of the nominal interest rate on each simulated scenario. With higher interest 
rates, some of the cases with new ventilation systems became more financially feasible.
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Fig. 6. LCA vs. LCC with color as the expected electricity price increase over the analyzed period. 

Fig. 7. LCA vs. LCC with color as the expected nominal interest rate. 

The most optimized and recommended combinations are illustrated in Table 7.  Most  
optimized and recommended combinations., and marked with circles in Figs. 3, 4, and
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5. From the sensitivity analysis of electricity price changes and nominal interest rate 
changes, the recommended cases did not change. 

Table 7. Most optimized and recommended combinations. 

Parameter Base Case Case 983 Case 543 Case 1059 

Ventilation Existing Existing CAV DCV 

PV System/kWp N/A 18 18 18 

Battery/kWh N/A N/A 10 N/A 

Windows Existing Upgrade Upgrade Existing 

Cellar insulation/m N/A N/A 0.1 N/A 

Crawlspace insulation/m N/A 0.1 0.2 0.2 

Leakage Reduction/% N/A 50 50 50 

EUI/kWh/m2Atemp/year 80 61 77 80 

LCC/MSEK 2 1.6 3 3.1 

LCA/ton CO2 eq. 81 43 77 72 

PPD/% 38 35 10.5 10 

3.3 Ventilation 

The calculated highest CO2 concentrations in different rooms were 733 PPM to 988 PPM 
with the proposed new ventilation systems, which complied with the Swedish workplace 
regulation (AFS 2020:1) [24]. The calculated SFP of the system was 0.96 kW/m3/s which 
complied with BELOK and BBR regulations [25, 27]. 

3.4 Regulations and Environmental Certification 

The calculated EPpet of the existing building was 144 kWh/m2Atemp/year (BBR refer-
ence value: 70 kWh/m2Atemp/year), which fell into energy class F. Without considering 
a new ventilation system, the most optimized combination had 72 kWh/m2Atemp/year 
(BBR reference value: 70 kWh/m2Atemp/year) EPpet, corresponding to energy class D. 
Considering the most optimized case with a new ventilation system, the value was 94 
kWh/m2Atemp/yr (BBR reference value: 96 kWh/m2Atemp/yr), corresponding to energy 
class C [25]. With the new PV system, the building met the Miljöbyggnad gold require-
ment with a PV energy usage of more than 5% of total energy use for the optimized cases, 
but the EPpet could not reach beyond the bronze rating [34]. With other combinations, it 
had the potential to meet the gold criteria for energy requirements, but the LCC, LCA, 
thermal comfort, and IAQ were not optimized, corresponding to the energy savings.
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4 Conclusions 

With the proposed optimized energy renovation plans with the existing ventilation sys-
tem, it was possible to reduce the EUI by 24%. Besides, it was also possible to reduce 
the LCC by 23% and carbon emissions by 47%. However, the existing IAQ problem 
could not be solved with those measures. Moreover, there was a negligible improvement 
in thermal comfort, with only a 7% reduction in PPD from the base case. 

With the proposed optimized solution, including a new ventilation system, there was 
no considerable improvement in the EUI due to the increased energy consumption for the 
fan operation. The LCC went up because of the high investment and maintenance costs 
of the new ventilation system. The LCC increased by 53% and 45% for the optimized 
DCV and CAV systems, respectively. However, the carbon emissions could be reduced 
by 11% and 4% for the optimized DCV and CAV systems, respectively. However, the 
new ventilation system could solve the IAQ problem, and the thermal comfort improved 
by 72% and 74% with the optimized DCV and CAV systems, respectively. It was also 
possible to reach up to energy class C according to Boverket and to achieve a bronze 
rating in “indicator 3 – energy use” according to Miljöbyggnad. The methodology used 
in this study offers a holistic, multi-objective approach that is applicable to all building 
types in cold climate regions. 

There were some limitations in the study, which included multiple assumptions due 
to data unavailability. A simplified approach with limited variables was used to run 
the parametric optimization simulator; there were also simulation program limitations. 
There was a lack of environmental declarations of secondary materials for LCA and 
uncertainties with financial parameters for LCC. The 54-day CO2 measurements offer 
useful insights but may not reflect full seasonal variation. However, this limitation does 
not impact the study’s outcome, as the proposed ventilation system effectively addresses 
the IAQ problem. Future studies that could be done from this study include a PV pro-
duction analysis with shading from the tree (a solution without cutting down the tree), 
LCA of the full building to meet the BBR and Miljöbyggnad recommendations, and a 
moisture analysis for the basement and the crawlspace with optimized cases. 
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Abstract. To achieve carbon neutrality (CN) by 2050, it is essential to develop
systems that enable detailed and spatially explicit regional analyses, allowing for
an accurate understanding of current urban energy consumption. In this study, we
aim to develop a system that constructs a wide-area building database by utilizing
geospatial information and enables the visualization and utilization of this data
through a WebGIS platform. This paper proposes a method for the automatic
generation of 3D building models based on GIS data, which are compatible with
air-conditioning load calculations, and applies this approach to energy analysis
on an urban scale. For the building types of office, accommodation, dedicated
store, and detached house, we defined the conditions necessary for the automatic
generation of EnergyPlus-compatible 3D models and determined their geometry
based on the arrangement of surrounding buildings. By analyzing the heating and
cooling loads of each building using the generated 3D models and visualizing the
results on a map, our findings suggest that combining a single office building with
multiple detached houses may contribute to the leveling of heating and cooling
demand.

Keywords: Geographic Information System (GIS) · Simulation · Automation
Modeling · Air Conditioning Load · Carbon Neutral

1 Introduction

Achieving carbon neutrality (CN) by 2050 stands as a globally shared objective. The
Japanese government, under its “GX (Green Transformation) Promotion Strategy” [1],
aims to simultaneously realize stable energy supply, economic growth, and decarboniza-
tion. The Cabinet Office and theMinistry of the Environment have formulated a strategy
to promote region-led decarbonization, aiming to achieve successful decarbonization
in at least 100 municipalities by fiscal year 2030 and to disseminate these pioneering
initiatives nationwide by fiscal year 2050 [2]. However, small municipalities face sub-
stantial barriers due to shortages in technical expertise and human resources, limiting
their capacity for independent decarbonization efforts. Furthermore, many existing suc-
cess stories involve costly new technologies or large-scale facility renovations, making
direct replication by other municipalities financially impractical.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
I. Martinac et al. (Eds.): EIA Nordic 2025, LNCS 16095, pp. 149–163, 2026.
https://doi.org/10.1007/978-3-032-03101-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03101-3_10&domain=pdf
http://orcid.org/0009-0000-6466-5691
http://orcid.org/0000-0003-0587-7349
http://orcid.org/0009-0006-1023-8452
https://doi.org/10.1007/978-3-032-03101-3\sb {10}


150 H. Osawa et al.

While current support tools like the Cabinet Office’s “RESAS” [3] and the Ministry
of the Environment’s “Japan Energy Database” [4] provide macroeconomic and energy
consumption insights, these platforms primarily offer statistical overviews. To create
effective action plans for carbon neutrality, we need more detailed and location-specific
regional analyses. However, current systems do not have this capability.

This study addresses this gap by developing a geospatial information system for
constructing wide-area building databases and visualizing them through WebGIS. Pre-
vious research demonstrated energy consumption estimation using simplified floor plans
derived from GIS building footprints and positional data [5], as well as thermal environ-
ment simulations integrating aerial photography-based tree identification with GIS data
to generate building-specific meteorological profiles [6]. As demand control becomes
critical for city-scale decarbonization, this paper proposes a novel methodology for auto-
matically generating 3D models from GIS data to enable air-conditioning load calcula-
tions. We further present urban-scale energy analysis results derived from this approach,
advancing the discourse on spatially resolved decarbonization strategies.

2 Method

This chapter proposes a method for automatically generating EnergyPlus [7] simulation
models using geographic spatial information from PLATEAU [8]. PLATEAU is a 3D
urban model development, utilization, and open data project led by the Ministry of
Land, Infrastructure, Transport and Tourism of Japan. It enables visualization of urban
structures through 3D models based on urban planning fundamental survey information
maintained by local municipalities. The platform is being utilized for urban disaster
prevention and as ametaverse integration platform,with development progressing across
municipalities throughout Japan.

2.1 Target Area

The buildings analyzed in this study are in Sapporo City, Hokkaido, Japan. Sapporo is
the prefectural capital of Japan’s northernmost prefecture, Hokkaido, with a population
of approximately 2 million residents. The city experiences cool summers and snowy
winters. Buildings within the red boundary shown in Fig. 1 were selected as calculation
targets. Table 1 presents the distribution of building uses within this boundary, with
“NA” indicating buildings of unknown use. Excluding buildings with undefined uses,
this area is predominantly residential with commercial buildings constituting the second
largest category, characterizing it as a typical residential district. While the PLATEAU
dataset includes auxiliary structures such aswarehouses and garages, only primary build-
ings were considered for calculations. This study specifically targets business facili-
ties, accommodation facilities, and dedicated retail facilities classified as commercial
buildings, and detached houses from the residential classification.
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Fig. 1. Target Area (Color figure online)

Table 1. Building Use and Number

Residential Commercial Industrial Public Other NA

17,508 2,093 320 516 5 9,954

2.2 3D Modeling of Commercial Buildings

Among the commercial building classification, this study specifically targeted office,
accommodation, and dedicated store for calculation purposes. The dataset comprised
955 offices, 144 accommodations, and 710 dedicated stores. This section details the
methodology employed for automatic 3D model generation of these building types.

Generation of Building Geometry. Simulation models were automatically generated
based on building polygon information and height data from PLATEAU. Floor count
was referenced from PLATEAU’s floor information; when unavailable, it was calculated
by dividing the measured height by a minimum of 4 m per floor. Window area was
determined using the window-to-wall ratio values presented in Table 2, which vary
according to building use and wall orientation, based on previous research [9]. Windows
were omitted for wall surfaces with adjacent buildings within 4 m proximity or for
wall widths less than 3 m. Surrounding structures within 50 m of each target building
were also modeled to account for shading effects. Figure 2 illustrates an example of the
automatically generated model.
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Table 2. Assigned Window Area Ratios by Building Use and Orientation

Direction Office Accommodation Dedicated Store Others

West 0.332 0.673 0.56 0.006

East 0.298 0.045 0.59 0.368

South 0.407 0.05 1 0.341

North 0.463 0.081 0.51 0.333

Fig. 2. Automatically generated 3D model

Calculation Parameters. In Japan, WEBPRO is utilized for evaluating energy con-
sumption performance of new constructions or major renovations in compliance with
the Building Energy Efficiency Act. The calculation load parameters for commercial
buildings in this study were based on WEBPRO calculation conditions [10], as shown
in Table 3 and Table 4. As indicated in Table 4, annual schedules are categorized into
patterns A-F, each composed of three distinct 24-h operational schedules with differ-
ent room specifications. These 24-h schedules vary according to the use classification
numbers presented in Table 3, with detailed specifications referenced from technical
documentation [11].

Table 3. Calendar Patterns and Corresponding Room Usage Schedules

Calendar
Pattern

Room Usage Pattern Remarks

1 2 3

A Weekdays Saturdays Year-end/New Year
National Holidays

B Weekdays Weekends
National Holidays
Long Vacations

Year-end/New Year Assumed for Junior
High Schools

(continued)
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Table 3. (continued)

Calendar
Pattern

Room Usage Pattern Remarks

1 2 3

C Weekdays Weekends
National Holidays
Long Vacations

Year-end/New Year Assumed for
Universities

D Weekdays Weekends
National Holidays

Year-end/New Year
1 weekday off per
month

E Weekdays Weekends
National Holidays

Year-end/New Year
1 weekday off per
week

F Weekdays Weekends
National Holidays

2 consecutive
weekdays off per
month

Table 4. Internal Load and Occupancy Parameters by Building Use

Building Use Use No Calendar
Pattern

Lighting
Heat Load
[W/m2]

Human
Heat Load
[W/ m2]

Equipment
Heat Load
[W/ m2]

People
[persons/ m2]

Office O-1 A 12 11.9 12 0.1

Municipal O-1 A 12 11.9 12 0.1

Assembly/Sales H-1 A 15 24.4 40 0.2

Accommodation H-1 A 15 6.44 0.7 0.07

Dedicated Store S-2 A 30 23.8 40 0.2

Local/National O-1 A 12 11.9 12 0.1

Bathhouse
Business

R-4 A 10 23.8 0 0.2

Amusement M-42 A 60 72.5 100 0.5

Medical D-1 A 12 7.36 3 0.08

Gym M-6 D 60 14.5 0 0.1

Memorial M-29 E 15 5.7 0 0.03

Educational E-8 A 20 23 8 0.3

Research E-8 A 20 23 8 0.3

Welfare H-1 A 15 6.44 0.7 0.07

Social Welfare M-49 D 10 5 0.1 0.1

Religious M-29 E 15 5.7 0 0.03

Cultural M-29 E 15 5.7 0 0.03
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The weather data was created by modifying EnergyPlus Weather Data (epw) param-
eters based on hourly meteorological values for Sapporo City published by the Japan
Meteorological Agency.

As detailed in Table 5, exterior walls were modeled as a composite of 50 mm thermal
insulation material with a thermal conductivity of 0.038 W/(m·K) and double-glazed
windows. Ventilation rate was uniformly set at 0.5 air changes per hour (ac/h) for all
simulations.

Table 5. Specifications of Building Envelope Components

Wall Floor, Ceiling Window

Outside: GW 50 mm GW 100 mm Low-e Double Glazing

Inside: Air Cavity

2.3 3D Modeling of Residential Buildings

The residential buildings in Fig. 1 include subcategories such as detached and multi-
family houses. This study focused on detached houses for automated model generation.
Figure 3 illustrates the duration curve of building heights for detached houses in the
target area. As shown, the dataset contains structures with extremely low and high
heights, which may represent non-residential buildings. To focus on typical detached
houses, only buildings with heights between 6.5 m and 10.5 m were selected, resulting
in a total of 7,473 detached houses. This section describes the configurationmethodology
for their automated 3D modeling.

Fig. 3. DurationCurve of BuildingHeights in the TargetArea: Focus onDetachedHouses (6.5m–
10.5 m)

Generation of Building Geometry. Simulation models were automatically generated
using PLATEAU polygon data and measured heights. Each house was modeled with the
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first floor designated as a living area and the second floor as bedrooms. Floor heights
were calculated by dividing the total measured height by the number of floors derived
fromPLATEAU. Following the commercial buildingmethodology,windowswere added
to walls facing unobstructed spaces (no adjacent buildings within 4 m) with widths
exceeding 3 m. Window area was set to 50% of the wall surface. Surrounding structures
within 50 m of each target building were modeled to account for spatial context.

Organization of Household Composition and Daily Activity Schedules. To assess
the impact of household composition on occupant-related loads, we analyzed the dis-
tribution of household types and their proportions in Sapporo’s Chuo Ward, which cor-
responds to the study area, based on the 2020 National Census [12]. The results are
summarized in Table 6. Couples only accounted for 43.51%, couples with children for
37.01%, and single parents with children for 17.18%, indicating that the majority of
households in Chuo Ward fall into these three categories. In this study, the five most
prevalent household types (No. 1, 2, 3, 5, and 7)were randomly assigned to each detached
house according to their statistical ratios. For the purpose of modeling, couples were
assumed to be male and female in their forties, children as male teenagers, and grand-
parents as males aged 70 or older. Individual daily activity schedules were defined with
reference to the 2020National TimeUse Survey [13] provided by theNHKBroadcasting
Culture Research Institute, as shown in Table 7.

Table 6. Household types and their proportions in Sapporo’s Chuo Ward

No No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11

Household
Composition
Pattern
(Assumed
Number of
People)

Married
Couple
(2 people)

● ● ● ● ● ● ● ● ● ●

Single
Parent
(1 person)

●

Grandparents
(2 people)

● ● ● ●

Grandfather
or
Grandmother
(1 person)

● ●

Child
(1 person)

● ● ● ● ● ●

Other
Relatives
(1 person)

● ● ● ●

Number in Household 2 3 3 4 3 5 4 5 4 5 6

Number of Households 24,467 20,812 9662 31 450 52 374 111 234 20 23

Household Proportion 43.5% 37.0% 17.2% 0.1% 0.8% 0.1% 0.7% 0.2% 0.4% 0.0% 0.0%
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Table 7. Individual daily activity schedules

Weekday Saturday Sunday

Male Teens Sleep 0:00–6:00 0:00–7:00 0:00–8:00

23:00–24:00

At-home Activities 6:00–8:00 7:00–11:00 8:00–14:00

18:00–24:00 14:00–24:00 16:00–23:00

Outing 8:00–18:00 11:00–14:00 14:00–16:00

Female 40s Sleep 0:00–6:00 0:00–6:00 0:00–7:00

At-home Activities 6:00–9:00 6:00–11:00 7:00–11:00

18:00–24:00 12:00–14:00 17:00–24:00

15:00–24:00

Outing 9:00–18:00 11:00–12:00 11:00–17:00

14:00–15:00

Male 40s Sleep 0:00–6:00 0:00–7:00 0:00–7:00

At-home Activities 6:00–7:00 7:00–9:00 7:00–11:00

19:00–24:00 18:00–24:00 17:00–24:00

Outing 7:00–19:00 9:00–18:00 11:00–17:00

Male 70 and above Sleep 0:00–6:00 0:00–6:00 0:00–6:00

23:00–24:00 23:00–24:00 23:00–24:00

At-home Activities 6:00–10:00 6:00–23:00 6:00–10:00

12:00–23:00 11:00–23:00

Outing 10:00–12:00 なし 10:00–11:00

CalculationConditions forDetachedHouses. Internal loadswere varied hourly based
on the household compositions in Table 6 and the daily schedules in Table 7. Sensible
heat gains from occupants were set at 100 W per person, and equipment heat gains in
living rooms were set at 1,150 W/m2. Lighting heat gains were set at 2 W/m2, with the
lighting schedule established according to the technical guidelines for residential energy
efficiency standards provided by the Building Research Institute [14]. The building enve-
lope composition and meteorological data were set in accordance with the parameters
used for commercial buildings.

3 Results and Discussion

Heating and cooling load simulations were conducted using the automatically gener-
ated 3D models produced by the proposed methodology, and the results were analyzed
accordingly.
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Analysis of Heating and Cooling Loads. Figure 4 and Fig. 5 present boxplots of
the annual total heating and cooling loads by building use. As shown in Fig. 4, when
focusing on the annual load per unit area, offices exhibited the lowest values across
the target area, while dedicated stores showed the highest values. These differences can
be attributed to variations in building operation types, occupancy hours, and internal
heat gain settings. In contrast, detached houses displayed greater variability compared
to other building types, which is likely due to the diversity in household compositions.
When examining the annual total heating and cooling load per building, as shown in
Fig. 5, accommodation had the highest loads, whereas detached houses had significantly
lower values than the other categories. This is primarily a result of building scale, as
larger commercial buildings tend to have greater heating and cooling demands than
residential buildings. While the annual load per unit area is effective for evaluating
individual building performance, as efforts shift toward city-scale decarbonization, it
becomes necessary to analyze annual total loads on a per-building basis.
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Fig. 4. Annual total heating and cooling load per unit area by building use
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Spatial Distribution Analysis. Figure 6 shows the spatial distribution of buildings by
use within the study area. The northern part of the map, where non-residential buildings
are concentrated, corresponds to an entertainment district, while other areas are predom-
inantly composed of detached houses with other building types dispersed throughout.
Given that the annual total heating and cooling load for detached houses is about one-
tenth that of offices (see Fig. 5), there is potential for load leveling by coordinating
electricity use between a single commercial building and multiple detached houses. To
further investigate this, Fig. 7 shows the heating and cooling load results for the area
highlighted in red in Fig. 6 at 6:00 a.m., 1:00 p.m., and 9:00 p.m. on January 17th.
The magnitude of the heating and cooling load is indicated by points plotted above
each building. The distribution of building uses is also depicted. In Fig. 7, there are
several dozen detached houses surrounding each office building, and it is evident that
the heating and cooling loads of detached houses are much lower than those of offices.
Some detached houses exhibit higher loads at times other than 1:00 p.m., whereas offices
often show the opposite trend. These results suggest that combining one office building
with multiple detached houses could contribute to the leveling of heating and cooling
demand. Realizing such a scheme could reduce infrastructure costs and help cut peak
energy demand, even on a small scale.

Office Accommodation Dedicated Store Detached house Other

Fig. 6. Distribution Map of Buildings by Usage
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Fig. 7. The heating and cooling load at 6:00 a.m., 1:00 p.m., 9:00 p.m. on January 17th for the
area highlighted in red in Fig. 6. (Color figure online)

4 Conclusion

Achieving CN by 2050 has become an internationally recognized goal, and it is essential
for each municipality to accomplish decarbonization at the local level. However, small
municipalities often face significant challenges due to a lack of specialized knowledge
and human resources, which limits their ability to independently advance decarboniza-
tion initiatives. Consequently, there is a growing need for systems that can facilitate
detailed and spatially explicit regional analyses.

In this study, we aim to develop a system that constructs a comprehensive building
database covering a wide area by utilizing geospatial information, and enables its visu-
alization and utilization as a WebGIS. This paper proposes a method for the automatic
generation of three-dimensional building models based on GIS data, specialized for air-
conditioning load calculations, and demonstrates their application to urban-scale energy
analysis.

The automatically generated 3D models are designed to be compatible with Ener-
gyPlus simulations. Building information was sourced from PLATEAU, a GIS plat-
form that has rapidly gained popularity throughout Japan. The target building types for
automatic generation included offices, accommodations, dedicated stores, and detached
houses.Buildinggeometrywasdeterminedusingpolygondata fromPLATEAU,building
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heights, and the distances to surrounding structures. For accommodations and dedicated
stores, the calculation conditions for load estimation were constructed with reference
to WEBPRO. For detached houses, the calculation conditions were established based
on assumed family compositions and daily schedules, derived from the 2020 National
Census and the 2020 Survey on Time Use and Leisure Activities.

Using the automatically generated 3D models, we calculated and analyzed the heat-
ing and cooling loads for each building. The results revealed that offices, accommoda-
tions, dedicated stores, and detached houses exhibited differences in heating and cooling
loads due to variations in usage patterns, operating hours, and internal heat generation
settings. In particular, detached houses showed greater variability in heating and cooling
loads compared to other building types, which can be attributed to the diversity in house-
hold compositions assumed in the calculations.When focusing on the annual cumulative
heating and cooling load per building, it was observed that the loads increasedwith build-
ing size, resulting in relatively lower loads for residential buildings compared to other
types. While annual cumulative heating and cooling load per unit area is effective for
evaluating the performance of individual buildings, the current phase of decarbonization
requires analysis based on the annual cumulative load per building, especially as efforts
shift toward city-level implementation. Furthermore, an analysis of the spatial distribu-
tion of heating and cooling loads using mapping techniques suggested that combining a
single office building with multiple detached houses could help to level out heating and
cooling demand. This approach has the potential to reduce infrastructure costs and cut
energy demand peaks, even on a small scale.

In summary, the system developed in this study enables the automatic generation
of 3D building models for urban-scale energy analysis, providing valuable insights
for the formulation of decarbonization strategies involving multiple buildings. Exist-
ing research has also utilized GIS-based urban energy simulations and map displays to
identify energy-inefficient buildings and clarify issues in specific applications [15–18].
However, these preceding studies often rely on analyses of annual cumulative energy
values. In contrast, our methodology performs dynamic simulations with EnergyPlus for
every building, calculating and visualizing heating and cooling loads on an hourly basis.
This detailed time-series data allows for the precise capture of energy demand peaks and
fluctuations, enabling its integration intomore realistic urban planning.While the current
analysis is specialized for heating and cooling loads, the detailed internal load settings,
such as human activity schedules, allow for future expansion to analyze total energy
consumption, including hot water supply, lighting, and appliances. This is expected to
lead to a granular understanding of city-wide energy dynamics and contribute to the
formulation of more advanced energy plans.

5 Limitations and Future Directions

This section summarizes the limitations of the present study and outlines future
directions.

1. Model Simplification and Accuracy: A limitation of this study is the simplification of
floor plans, envelope geometries, and internal loads during the automatic generation
of 3D models from GIS data. Although a formal accuracy validation has not yet been
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conducted due to a lack of measured field data, the calculated heating and cooling
loads appear to be higher than standard reference values. This discrepancy is likely a
consequence of themodel’s simplification, and it is necessary to improve the accuracy
of elements where higher fidelity is achievable. Regarding envelope geometry and
floor plans, the increasing availability of Level of Detail 3 (LOD3) data is expected
to enable more precise representations in the future. Furthermore, research is being
conducted onmethods to infer internal layouts frombuilding footprints usingmachine
learning [19]. If room uses can be assigned based on GIS footprints by referencing
such existing studies, the accuracy of energy load prediction could be significantly
improved by applying use-specific load settings.

2. Applicability to Other Regions: As the proposed methodology is based on GIS data,
it can be readily applied to other regions where such data is available. In recent years,
GIS data has become increasingly common, particularly in major cities. Even in
unmapped areas, building geometries can be determined using resources like Open-
StreetMap or commercial Digital ElevationModels (DEMs). Differences in meteoro-
logical conditions can be addressed by utilizing region-specific weather data within
EnergyPlus, allowing for simulations that consider local characteristics. However, a
significant challenge lies in accurately reflecting regional differences in lifestyles and
activity schedules, as creating a perfect replication is often impractical. Therefore,
we believe that the application of this energy simulation method can be expanded
more efficiently by using machine learning to correct for discrepancies between the
simulation results from the auto-generated 3D models and actual measured regional
data.

3. IntegrationwithWebGIS: The outcomes of this researchwill be utilized for the energy
data in a WebGIS currently under development. TheWebGIS consists of a main win-
dow and a sub-window, as shown in Fig. 8. In the main window, energy values for
different types are displayed color-coded on a 2D map, providing a comprehensive
overview of the energy totals and trends for individual or multiple buildings. This is
also useful when considering countermeasures for the fluctuations of unstable renew-
able energy sources like solar power. The sub-window allows for detailed parameter
settings, the display of building attribute information, and the graphical representa-
tion of energy quantities, including total values for a single building or a wide-area
selection. Furthermore, users can export the energy data of selected buildings in CSV
format, enabling detailed offline analysis. This WebGIS combines intuitive usability
with advanced analytical capabilities, contributing to the formulation of decarboniza-
tion plans for entire cities. Specifically, the visualization of time-series energy data
enables the identification of instantaneous peak values and energy trends, leading to
more realistic urban energy analysis.
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Abstract. In Japan, the pursuit of carbon neutrality necessitates a substantial 
reduction in building energy consumption alongside the proactive integration of 
renewable energy sources. This study evaluates the effectiveness of a 3D modeling 
approach in estimating energy demand across multiple buildings. 

A 3D building model was developed using GIS data, site surveys, and open 
datasets to extract critical parameters, such as window-to-wall ratio. Subsequently, 
indoor environmental conditions, HVAC system specifications, and other relevant 
factors were incorporated to simulate energy consumption under various condi-
tions. Despite employing a consistent methodology, the accuracy of simulations 
varied among buildings. Further analysis identified key determinants of accuracy, 
including the precision of 3D modeling, the functional use of buildings, and the 
definition of envelope performance parameters. 

These findings underscore the importance of high-quality data acquisition and 
parameter calibration in energy simulations. The insights gained contribute to the 
advancement of simulation methodologies, ultimately supporting more effective 
energy management and sustainable urban planning. 

Keywords: Energy Simulation · PLATEAU · CASBEE 

1 Introduction 

Global climate change has emerged as a critical issue demanding coordinated interna-
tional action. Japan has committed to achieving carbon neutrality (CN) by 2050 and is 
implementing a range of national policies aimed at restructuring energy consumption and 
promoting renewable energy adoption [1]. In this effort, urban areas—particularly the 
building sector—have become a major focus, as they account for approximately 30% of 
the country’s total final energy consumption [2]. Urban environments, characterized by 
high population density and concentrated economic activity, face increasingly complex 
energy challenges, including demand concentration and peak load fluctuations. Address-
ing these challenges requires a detailed understanding of how energy is consumed across 
different parts of a city [3]. 

The objective of this study is to develop a methodology for estimating building-level 
energy consumption and to create a simulation map of energy use in Sapporo, Japan.
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Such a map provides a foundation for formulating strategies to enhance energy efficiency 
and promote renewable energy adoption in cities. For the precision of energy consump-
tion simulations, accurate estimation of building envelope performance parameters is 
extremely important. Among these parameters, the window-to-wall ratio (WWR) has 
been identified as a key factor influencing cooling energy use in office buildings, mak-
ing its accurate assessment indispensable for reliable simulations [4]. In this study, 3D 
models of individual buildings were created using publicly available map data and field 
surveys to estimate each building’s WWR, and then use the resulting data to simulate 
energy consumption. The methodology for this study consists of the following steps. 

1. Generation of 3D building models using publicly available map data to create the 
building data needed for the simulation. 

2. Estimation of energy consumption based on building characteristics and regional 
climatic conditions. 

3. Comparative analysis with actual consumption data to assess accuracy. 

2 3D Modeling Using Publicly Available Map Data 

2.1 Modeling Outline 

Figure 1 presents an overview of the modeling approach adopted in this study. First, a 3D 
model was developed in SketchUp (3D modeling software) using the publicly available 
map data described below as a reference. Next, field photographs were imported into 
SketchUp and applied as textures to express the building façades. Finally, envelope 
composition parameters such as WWR were organized and compiled in Excel. 

Fig. 1. Flow Chart of Modeling Procedure 

2.2 Detailed Modeling Procedure 

(1) Develop 3D Model 
To develop the 3D models, the following open-source datasets was used to obtain 

building footprints and heights. (Fig. 2). 
• OpenStreetMap (OSM): 

OSM is an open-access geographic information dataset that allows users to freely 
utilize and edit map data [5]. In this study, building footprints were extracted from 
OSM to define the planar geometry of structures.
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• Project PLATEAU: 
Project PLATEAU is a web-based 3D urban dataset provided by the Japanese 

government, constructed from aerial surveys and other sources [6]. In this study, 
building heights were referenced from PLATEAU. 

(2) Express Façade 
As shown in Fig. 3, photographs of building façades were taken on site with care 

to avoid distortions caused by reflections or obstructions. These images were then 
set as textures onto the corresponding walls of the 3D models created in Step (1) 
(left side of Fig. 4). The final model is illustrated in right side of right side of Fig. 4. 

(3) Create Data 
Based on the textured 3D model from Step (2), individual windows were identi-

fied and selected (Fig. 5), and the WWR was calculated. This data was organized into 
a database on a floor-by-floor basis. The wall facing the adjacent building typically 
has fewer windows. Therefore, it was treated as a windowless facade. 

Fig. 2. Develop 3D Model 

Fig. 3. Photos Used as Texture
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Texture Mapping 3D Model with Texture 

Fig. 4. Texture Mapping and 3D Model with Texture 

Fig. 5. Selection of the Windows 

3 Simulation of Building Energy Consumption 

3.1 Method 

This study performed energy consumption simulations for 13 buildings in Sapporo, 
Japan, for which actual energy use data were available. The simulation employed the 
Simplified Calculation Methods of Cooling and Heating Loads (SHASE-S112-2019) 
by The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan, a tool 
implemented in Microsoft Excel. By inputting building-specific parameters (see Table 1), 
along with indoor and HVAC conditions, the program calculates annual primary energy 
consumption, CO2 emissions, peak thermal loads, and total heating/cooling loads. 

The input parameters were derived from the 3D modeling process described above. 
The 13 buildings were divided into two categories based on the type of reference data 
and simulation process. Simulations were conducted for each building group (A and 
B) to estimate the annual primary energy consumption. In addition, in this study, the 
energy consumption for lighting and outlet loads was calculated uniformly based on the 
conditions shown in Table 2, and these values were added to the simulation results.
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• Category A: Buildings using uniform assumptions for envelope data and HVAC.
• Category B: Buildings with case specific parameters sourced from the CASBEE 

Sapporo database. 

CASBEE Sapporo is the City of Sapporo’s implementation of the national Com-
prehensive Assessment System for Built Environment Efficiency (CASBEE), adapted 
to municipal needs. Under this scheme, building owners of facilities above a specified 
size must submit environmental performance reports, covering metrics such as energy 
consumption, envelope specifications, and operational data, to the city. The collected 
data are published and visualized to support facility managers in optimizing energy use, 
shifting peak loads, and advancing decarbonization efforts at the local level [7]. 

Table 1. Parameters of Models 

Heading Unit 

Number of Floors Floor 

Floor Type Top Floor / Intermediate Floor 

Orientation of Exterior Wall with Windows [°] 

Zone Type Interior / Perimeter 

Zone Floor Area [m2] 

Window-to-Wall Ratio [%] 

Room Depth [m] 

Table 2. Energy Consumption from Lighting and Outlets 

Heading Value 

Lighting Load Capacity [W/m2] 10 

Plug Load Capacity [W/m2] 15 

Annual Operating Days [day] 245 

Daily Operating Hours [h] 13 

Primary Energy Conversion Factor [MJ/kWh] 8.64 

Primary Energy Consumption from Lighting and Plug Loads [MJ/(m2·year)] 687 

3.2 Simulation and Validation for Category a Buildings 

6 buildings of the 13 buildings were simulated using standard envelope performance 
values. For these buildings, exterior wall thermal transmittance was uniformly set based 
on conditions listed in Table 3. The calculation result was 1.243 [W/m2·K]. Double-
glazed windows with thermal transmittance of 2.7 [W/m2·K] were assumed. HVAC 
systems were assigned based on available design information.
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These buildings are all public facilities owned by the City of Sapporo. The calculated 
energy consumption was compared against open data provided by the municipality 
(Fig. 6). 

Table 3. Conditions for Calculating Thermal Transmittance of Walls 

Building Material Thickness [m] Thermal Conductivity 
[W/(m·K)] 

Thermal Resistance 
[m2·K/W] 

Gypsum Board 0.008 0.22 0.036 

Glass Wool 0.025 0.05 0.5 

Concrete 0.15 1.6 0.094 

Cement Mortar 0.025 1.5 0.017 

Tile 0.01 1.3 0.008 
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Fig. 6. Comparison of Simulation Results and Open Data (Group A) 

In general, large errors were observed between the simulation results and the open 
data. The Mean Absolute Percentage Error (MAPE) for this simulation was calculated to 
be 85%. In five of the six cases, the simulation overestimated energy consumption. This 
suggests that actual operation times for heating/cooling systems, lighting, and outlet 
loads may be shorter than those assumed in the simulation. Additional factors, such as 
unconditioned zones or limited night-time operation, may also have contributed to the 
differences. Conversely, one building—the fire station—showed higher actual energy 
use than the simulation, likely due to unaccounted factors such as conditioned garages 
or thermal performance of rolling shutters. The model of the Chuo Ward Office showed 
a high degree of accuracy. This was largely due to the fact that the estimated envelope 
performance values and air conditioning systems were close to the actual ones.
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3.3 Simulation and Validation for Category B Buildings 

The remaining seven buildings were selected from those for which detailed environmen-
tal performance data were published by CASBEE Sapporo. Parameters such as the type 
of air conditioning system, thermal transmittance of walls, and thermal transmittance of 
windows were referenced separately for each building (see Table 4). 

Building Energy Index (BEI) values reported in CASBEE Sapporo were used to com-
pute the design primary energy consumption, which was then compared to simulation 
results (Fig. 7)  [8]. 

Table 4. Detailed Environmental Performance Data 

Building Air Conditioner Type Wall thermal transmittance 
[W/m2・K] 

Window thermal 
transmittance [W/m2・K] 

Office A AHU 2 4 

Office B FCU 0.7 3 

Office C AHU 0.5 2.2 

Office D AHU 2 4 

Hotel A FCU 1 3 

Hotel B AHU 2 4 

Hotel C FCU 1 3 
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Fig. 7. Comparison of Simulation Results and Open Data (Group B) 

Among the seven buildings, four showed good agreement between simulated and 
actual energy consumption. These four were all office buildings. The other three, all 
hotels, exhibited significant underestimation by the simulation. The overall MAPE for 
this simulation was 26%, while the MAPE for the office buildings alone was 11%.
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This is likely due to the longer operation hours of hotel HVAC and lighting systems, 
which were not fully captured by the office-based simulation assumptions. Although the 
energy consumption associated with electrical outlets and lighting was uniformly set, 
building operating hours are expected to vary considerably depending on their intended 
use. Therefore, the energy consumption should be adjusted based on the building type. 

The higher accuracy in simulating office buildings is attributed to the detailed param-
eter inputs enabled by CASBEE Sapporo data. These results indicate that by adapting use 
type settings and envelope scores more precisely, the reliability of energy consumption 
simulations can be significantly improved. 

4 Discussion 

In this study, energy simulations were successfully performed only for buildings whose 
envelope performance and HVAC systems referenced CASBEE Sapporo data. The 
results underscore the importance of accurately specifying envelope performance and 
HVAC conditions. The four buildings with the highest simulation accuracy were all 
office buildings, indicating that building use has a significant impact on simulation pre-
cision. These findings demonstrate that the proposed simulation method can produce 
accurate energy consumption estimates when building use and envelope specifications 
are clearly defined. Currently, many buildings in Sapporo are not registered under CAS-
BEE Sapporo. CASBEE Sapporo is mainly implemented for large-scale buildings. For 
buildings without detailed data on envelope performance and air conditioning systems, 
simulation methods need to be considered. Furthermore, a simulation method for energy 
consumption of buildings used for purposes other than offices should also be considered. 

5 Conclusion and Future Perspectives 

This study examined the effectiveness of estimating building energy consumption using 
3D building models developed from publicly available map data. Geometric information 
such as WWR was extracted by integrating photo-based façade textures, and building-
level energy demand was simulated accordingly. The results showed that simulations 
were highly accurate for office buildings for which detailed envelope and air condition-
ing data were available through CASBEE Sapporo, whereas generalized assumptions 
often led to overestimations. A major limitation of this study was the small number of 
buildings analyzed. In particular, buildings with complex wall geometries were excluded 
from the simulation because the façade could not be properly reconstructed in the 3D 
model. The limited dataset made it difficult to identify whether discrepancies between 
the simulation and actual energy consumption were due to issues in the 3D modeling, 
inaccurate envelope inputs, or incorrect HVAC assumptions. 

Future research should focus on the following challenges and directions:

• Introduce modeling techniques that can capture complex façade geometries, such 
as those using image recognition and LiDAR data, to improve the accuracy of 3D 
models and to increase the number of buildings to simulate.

• Develop application methods for buildings with different operational characteristics, 
such as hotels and residential buildings, by establishing use-specific parameter sets.
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• Examine efficient methods for increasing the number of buildings to be simulated, 
such as recording video with a camera mounted on a vehicle and extracting still 
images from the footage. 

By implementing these improvements, it will be possible to achieve high-
precision 

energy assessments at the urban scale, thereby contributing to the design of Zero 
Energy. 

Buildings and the formulation of effective energy policies. 
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Abstract. To achieve carbon neutrality (CN) by 2050, efforts have primarily 
focused on CN at the level of individual buildings. However, it is essential to 
consider how CN can be achieved for entire cities, including these buildings. This 
study aims to estimate the available space for solar panel installation on buildings 
in urban areas to enhance the utilization of photovoltaic systems. In this study, we 
propose a semantic segmentation method for estimating building shape (protrud-
ing parts and depressed parts relative to the reference plane), which significantly 
influences the available space for solar panel installation. We conducted seman-
tic segmentation under five different conditions, varying the training and testing 
datasets to analyze the impact of roads in aerial imagery. Furthermore, to improve 
the extraction accuracy of protruding parts, this study proposes a weighted over-
lay method, which overlays five different inference images using various weight 
combinations. For protruding part extraction using the semantic segmentation 
method, an F-Score of 30.5% was achieved when roads were fully retained during 
training and inference, whereas an F-Score of 41.4% was obtained when roads 
were entirely removed during training and inference. However, the extraction of 
depressed parts was not successful. Additionally, the weighted overlay method 
improved the F-Score, achieving a maximum value of 72.5%. 

Keywords: Rooftop · Deep Learning · Semantic Segmentation 

1 Introduction 

With the international goal of achieving carbon neutrality (CN) by 2050, Japan has 
outlined a policy to realize nationwide decarbonization through the formulation of a 
decarbonization roadmap, enabling municipalities across the country to progressively 
implement carbon reduction measures. Traditionally, the focus has been on achieving 
CN at the level of individual buildings, such as Net Zero Energy Buildings (ZEBs). 
However, moving forward, it is essential to consider how CN can be achieved for entire 
cities, including these buildings. Achieving city-scale carbon neutrality necessitates the 
development of sophisticated analytical tools designed to optimize energy supply and 
demand. These tools are pivotal in facilitating the efficient integration of renewable 
energy sources into the urban energy infrastructure.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
I. Martinac et al. (Eds.): EIA Nordic 2025, LNCS 16095, pp. 173–184, 2026. 
https://doi.org/10.1007/978-3-032-03101-3_12 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03101-3_12&domain=pdf
http://orcid.org/0009-0006-1023-8452
http://orcid.org/0000-0003-0587-7349
http://orcid.org/0009-0000-6466-5691
http://orcid.org/0009-0001-8122-8861
https://doi.org/10.1007/978-3-032-03101-3\sb {12}


174 K. Suzuki et al.

In this context, research on the effective use of renewable energy in urban areas has 
been actively pursued. For example, Ali et al. [1] proposed a method to enhance grid-
connected PV system by using an Adaptive Fuzzy Logic Controller to stabilize output 
under fluctuating solar conditions. Nevertheless, relatively few studies have investigated 
the potential for introducing renewable energy, particularly solar power, in urban envi-
ronments, where space constraints and building diversity pose unique challenges. This 
study aims to estimate the available space for PV installation on rooftops in urban areas 
to enhance the utilization of photovoltaic systems. 

Detecting building outlines from high-resolution satellite or aerial images has been an 
important and challenging research topic. In particular, the combination of deep learning 
methods and GIS data (e.g., satellite and aerial images, map data, etc.) has been widely 
used for building outline detection [2–5]. For example, Li et al. [2] proposed a U-Net-
based semantic segmentation method using public GIS datasets and satellite imagery. 
However, these studies do not account for building shapes. To better characterize building 
shapes, many studies have adopted light detection and ranging (LiDAR) data [6–8]. 
However, public LiDAR datasets are limited, and LiDAR data treat rooftop equipment 
the same as rooftop irregularities. In contrast, aerial imagery is widely available across 
Japan and allow for a clear distinction between rooftop equipment and irregularities. 

This report presents research on building shape estimation, which significantly influ-
ences the available space for solar panel installation. The study was conducted using 
aerial imagery and deep learning techniques, including semantic segmentation, which 
enables precise pixel-level classification of objects such as buildings and surrounding 
infrastructure. This study creates and evaluates deep learning semantic segmentation 
models using approximately 1,500 buildings in central Sapporo, as shown in Fig. 1. 
Throughout our research, we conducted training and inference under five different con-
ditions (see Table 1) using the same hyperparameters, varying the training and test set-
tings with aerial imagery at a resolution of 10 cm to assess the influence of roads in aerial 
images. We used AP (Aerial Photograph), APB (Images with only buildings extracted 
from AP), GT (Ground Truth), and GTB (Images with only buildings extracted from 
GT) for training and testing. Furthermore, to improve extraction accuracy, this study 
proposes a weighted overlay method, which overlays five different inference images 
using various weight combinations. 

In this report, the term “protruding part” refers to a section of the rooftop plane that is 
elevated above the reference plane, which is the largest continuous surface area of each 
building. Similarly, the term “depressed part” refers to a section of the rooftop plane that 
is lower than the reference plane. 

The rest of the report is organized as follows. Section 2 introduces the methodology, 
including hyperparameters, data preparation and augmentation, and the weighted overlay 
method. Section 3 presents the results of protruding and depressed parts extraction, as 
well as overlayed results. Section 4 discusses and analyzes the extraction results obtained 
from each semantic segmentation model and the weighted overlay method. Finally, 
Sect. 5 summarizes the conclusions of this research.
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Fig. 1. Study area (red dotted line), covering Sapporo’s business district with 1472 mainly non-
residential buildings. Left: building outlines. Right: aerial image. (Color figure online) 

Table 1. Training and Inference Conditions 

Learning Condition Test Condition 

Condition Name Input Image Ground Truth Test Image 

A AP GT AP 

B APB GT APB 

C APB GT AP 

D APB GTB APB 

E APB GTB AP 

2  Metho  d

2.1 Hyperparameters 

Table 2 presents the hyperparameters used in this study. In this study, we employed U-
Net [9] as the architecture for the deep learning model. U-Net is a type of convolutional 
neural network (CNN) designed for pixel-wise image segmentation. The U-Net encoder 
extracts features through convolution, while the decoder restores them to their original 
image size via upsampling. Additionally, skip connections help preserve fine details and 
effectively transfer them to the decoder. Due to its ability to achieve high segmentation 
accuracy even with limited training data, U-Net is well-suited for this study. To reduce 
computational load, the input images (512 × 512) were resized to 256 × 256. Initially, 
training was conducted for 6 epochs, but in some cases, convergence was insufficient. 
Therefore, the training was extended to 12 epochs where necessary. Binary Cross Entropy 
was selected as the loss function since this segmentation task involves distinguishing 
between background and target areas. Batch size determines the number of samples 
processed per update step. A smaller batch size introduces greater variability in gradient 
updates, which can enhance generalization and prevent overfitting. Consequently, a batch 
size of 2 was chosen. To ensure sufficient training despite the small batch size, a higher 
number of update steps per epoch were required. Thus, the number of steps per epoch
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was set to 2,000 to allow for adequate parameter updates and ensure effective learning. 
In this study, the Adam optimizer was used to optimize the deep learning model. This 
choice was made because its adaptive learning rate adjustment facilitates fast and stable 
convergence. The initial learning rate was set to 0.0001. 

Table 2. Hyperparameters 

Hyperparameters Value 

Model Architecture U-Net 

Input Image Size 512 × 512 (Resized to 256 × 256) 
Epochs 6 (12) 

Loss Function Binary Cross Entropy 

Batch Size 2 

Steps per Epoch 2,000 

Learning Rate 0.0001 

Optimizer Adam 

2.2 Preparation of Input and Test Images 

For the input images (hereafter referred to as “Input Image”) and the test images (hereafter 
referred to as “Test Image”), we utilized 10 cm resolution aerial imagery [10]  (AP)  taken  
in August 2022, which were commercially provided by Kokusai Kogyo Co., Ltd.

Additionally, as shown in Fig. 2, we used processed images (APB) where only build-
ings were extracted from aerial imagery. The extraction of building areas was performed 
using a pre-trained model (Buildings Segmentation) [11] implemented as a QGIS plugin 
developed by Przemysław Aszkowski and Bartosz Ptak. This model employs Xunet for 
segmentation between buildings and the background. It was trained on the RampDataset 
[12], achieving an F-Score of 81% during validation. Both AP and APB images have 
dimensions of 13,312 × 14,848 pixels. 

GT GTBAP APB GT GTB 
Protruding Parts Depressed Parts 

Fig. 2. Extraction of building area from the aerial imagery and the ground truth image. 

2.3 Creation of Ground Truth 

Annotations were manually performed using QGIS. The annotation process involved 
manually identifying and labeling protruding and depressed parts. The resulting images
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consist of GT, where protruding or depressed parts are black, and the background is 
white. Additionally, we used another type of image, GTB, which was extracted from GT 
and contains only the overlapping areas of protruding or depressed parts and APB. 

2.4 Training and Inference Conditions 

To facilitate resizing to 256 × 256, the images were initially divided into 512 × 512 seg-
ments, allowing downscaling by a factor of two while minimizing interpolation artifacts. 
Additionally, rather than directly splitting the images into 256 × 256 sections, the 512 × 
512 segmentation approach was chosen to preserve the structural integrity of individual 
buildings, ensuring that they remain as intact as possible within each processed image. 
As  shown  in  Fi  g. 3, both the Input Image and Ground Truth were divided into 512 × 512 
pixels. Of the 754 image pairs, 749 were augmented through rotation, translation, shear 
transformation, zoom, horizontal flipping, and filling, generating 3,995 training pairs. 
For inference, five unseen images were used as Test Images. The output consists of an 
image representing the probability of protruding parts in grayscale (Output Image) and 
an image where pixels above a 50% threshold are classified as protruding or depressed 
parts (Binary Image). Evaluation metrics were calculated for all conditions using GT 
and Binary Image. 

Input Image (10cm resolution) Ground Truth 

14848 
pixels 

13312 pixels 

512 

512 

Fig. 3. Division of Input Image and Ground Truth 

2.5 Weighted Overlay Method 

A weighted overlay was applied to five inference images of protruding parts. Using the 
Output Images generated under five conditions, weights were varied from 0.0 to 1.0 in 
steps of 0.1, while keeping the total weight at 1.0, resulting in 1001 different weight-
ing combinations. Each inference image was then overlaid using these combinations, 
with a 50% threshold applied to generate the corresponding images (Blended Image). 
Evaluation metrics were calculated for all 1001 conditions. 

2.6 Evaluation Metrics and Methods 

The evaluation metrics used in this study include precision, recall, F-Score, and Intersec-
tion over Union (IoU). Precision represents the proportion of data predicted as positive 
by the model that is actually positive. On the other hand, recall indicates the proportion 
of actual positive data that the model correctly predicts as positive. The F-Score is the
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harmonic mean of precision and recall. IoU measures the overlap between the ground 
truth and the predicted area, calculated as the ratio of their intersection to their union. In 
all conditions, evaluation metrics were calculated based on GT. 

3 Results 

3.1 Inference Results for Each Condition 

Protruding Parts. Figure 4 presents the inference results for protruding parts, and 
Table 3 lists the evaluation metrics. Across all conditions, both the Output Image and 
Binary Image showed differed notably from the Ground Truth. The maximum F-Score 
reached approximately 40%, and the highest IoU was around 25%, indicating insufficient 
learning. Conditions A, B, and D contained some correctly extracted areas, as suggested 
by their relatively high precision values. However, their very low recall values indicate 
that many true protruding areas were missed. Conversely, conditions C and E extracted 
excessively large areas compared to their GT images. Their high recall values further 
suggest a high rate of false positives. The F-Score and IoU values in conditions B and 
C were significantly lower than those in condition A. In contrast, condition D achieved 
higher values than condition A, while condition E showed comparable results. Notably, 
in Images 1 and 2, protruding parts located in the shadow of other buildings were 
not extracted. Additionally, in Image 5, the equipment beneath the structural frame 
supporting the signboard was erroneously recognized as a protruding part. 

Depressed Parts. Figure 5 presents the inference results for depressed parts. In con-
dition A, some areas were inferred; however, the inferred areas differed significantly 
from the true areas. Additionally, the evaluation metrics were low, indicating insuffi-
cient learning. In conditions B and C, areas corresponding to building shadows in the 
APB were inferred as depressed parts with high probability. As a result, the extracted 
areas deviated significantly from the actual depressed parts. Despite this, their evalua-
tion metrics were slightly better than those of condition A. In conditions D and E, all 
pixels were inferred as 100% depressed parts, suggesting that the model failed to learn 
properly.
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Fig. 4. From left to right are the AP, APB,  GT,  and  GTB used for inference and Binary Images 
for conditions A through E when the protruding parts were inferred.

Fig. 5. From left to right are the AP, APB,  GT,  and  GTB used for inference and Binary Images 
for conditions A through E when the depressed parts were inferred.
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Table 3. Training and Inference Conditions 

Conditions Precision Recall F-Score IoU 

Protruding 
Part 

A 38.8% 25.2% 30.5% 18.0% 

B 34.7% 19.9% 25.3% 14.5% 

C 21.9% 41.2% 28.6% 16.7% 

D 60.7% 31.4% 41.4% 26.1% 

E 22.0% 52.4% 31.0% 18.3% 

Depressed 
Part 

A 1.9% 1.6% 1.8% 0.9% 

B 6.2% 6.3% 6.2% 3.2% 

C 1.3% 12.0% 2.3% 1.2% 

D *** *** *** *** 

E *** *** *** *** 

3.2 Results of Overlaying Inference Images 

Table 4 lists the optimal weighting combinations for each test image that resulted in the 
highest F-Score and IoU, along with the evaluation metrics for the Blended Images. Addi-
tionally, Fig. 6 presents the output images generated for each test image and condition, 
as well as the Blended Images. 

In Images 1, 4, and 5, the Blended Images more closely resembled the Ground 
Truths than individual conditions, with improved F-Score and IoU values. Conversely, 
in Images 2 and 3, the optimal weighting assigned condition D a weight of 1.0 while 
all other conditions had weights of 0.0, meaning overlaying had no significant effect 
on these images. Moreover, in Images 1 and 2, for buildings where protruding parts 
were stacked on top of one another, the lower protruding parts were not extracted—even 
in the Blended Image. This is likely because those areas had low probability values in 
individual condition outputs, preventing them from being captured through overlaying. 
For Image 5, false extractions persisted in a portion of the building on the left side of 
the image, even in the Blended Image. This is further indicated by the high recall value. 

Regarding weighting combinations, the optimal weights varied significantly across 
test images, with no consistent trend observed. 

Table 4. Training and Inference Conditions 

Test Image Weight Combination Evaluation Metrics 

A B C D E Precision Recall F-Score IoU 

1 0.7 0.0 0.0 0.1 0.2 66.4% 36.8% 47.3% 31.0% 

2 0.0 0.0 0.0 1.0 0.0 65.9% 51.3% 57.7% 40.5% 

3 0.0 0.0 0.0 1.0 0.0 30.8% 41.2% 35.3% 21.4%

(continued)
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Table 4. (continued)

Test Image Weight Combination Evaluation Metrics

A B C D E Precision Recall F-Score IoU

4 0.1 0.6 0.0 0.0 0.3 77.4% 68.1% 72.5% 56.8% 

5 0.3 0.3 0.2 0.1 0.1 37.9% 79.3% 51.3% 34.5% 

Fig. 6. From left to right are the aerial imagery, Output Images (images that represent the proba-
bility of protruding parts in grayscale) for each condition, the Blended Image with the best F-Score 
and IoU values, and the Ground Truth, which is the correct image. 

4 Discussion 

4.1 Inference of Protruding Parts and Depressed Parts 

Protruding Parts. Conditions C and E exhibited high Recall, while B and D showed 
higher Precision. In C and E, the models frequently extracted entire buildings rather 
than just protrusions, likely because they learned a heuristic such as “areas adjacent 
to shadows indicate protrusions.” Since these models used AP images for inference 
without prior exposure to building shadows, they misinterpreted building shadows as 
protrusions, increasing false positives. 

In contrast, B and D used APB images for both training and testing, which lack build-
ing shadows. Thus, their models applied the shadow-adjacency rule more accurately, 
leading to fewer false positives and better Precision.
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Condition A was also tested on AP images, but its model was trained on AP, allowing 
it to distinguish building shadows from those of protrusions. As a result, it avoided the 
over-extraction seen in C and E. 

Conditions B and C, as well as D and E, shared training parameters but differed in 
test data. In B and C, Ground Truth (APB) included inconsistencies due to imperfect 
building extraction, causing the model to learn some background areas as protrusions. 
D and E had more consistent data, and D, which maintained full consistency between 
training and testing (both using APB), achieved the best F-score and IoU among B to E. 

Comparing A and D, A required the model to distinguish between different shadow 
types, whereas D allowed all shadows to be treated as protrusions. This simpler task in 
D likely contributed to its superior performance. 

Although APB was chosen to avoid road-related noise, results show that the type 
of shadow learned by the model had a greater influence. In C and E, building shadows 
present in Test Images (AP) led to over-extraction, despite the training aim to remove 
such noise. Since building shadows often fall on roads, their absence in training (as in 
APB) critically impacted inference accuracy. 

Depressed Parts. The inference results for depressed parts were worse than for pro-
truding parts. One possible reason is that depressed parts constitute an extremely small 
proportion of the image compared to the background, making effective model learn-
ing difficult. Additionally, in conditions D and E, the already limited depressed parts 
may have been further diminished due to inaccuracies in building extraction, potentially 
leading to complete learning failure. Another contributing factor could be improper data 
augmentation. Given the small size of depressed areas, data augmentation should have 
been carefully tailored; however, some of the augmentation techniques used may have 
produced inappropriate training data. 

4.2 Overlaying Inference Results 

Blended Image 2 achieved relatively high evaluation metrics without overlaying. In this 
case, overlaying was deemed unnecessary because one of the conditions already had 
high evaluation metrics. Additionally, in Blended Images 1 and 4, condition A and B 
respectively had significant weight, while condition A, D, and E complemented the main 
condition. This indicates that overlaying helped highlight extractable areas within each 
condition while mitigating false extractions. Therefore, overlaying was successful in 
these images. 

Conversely, overlaying was ineffective for Images 3 and 5. In Image 3, where con-
dition D had a weight of 1.0 and the evaluation metrics were relatively low, overlaying 
was ineffective, indicating that the protruding parts in the image were difficult to extract. 
In Image 5, although the extracted areas varied slightly across conditions, overlaying 
expanded the extraction range, ultimately amplifying false extractions.
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5 Conclusion 

This study analyzed the protruding and depressed parts of buildings in Sapporo City 
using aerial imagery and semantic segmentation. Additionally, it examined whether the 
presence of roads in the photographs influences training and whether the overlaying 
method enhances the extraction of protruding parts. The key findings are as follows: 

1. Despite the low evaluation metrics, some protruding parts were correctly extracted, 
demonstrating the potential of semantic segmentation for protrusion detection. 

2. Extracting depressed parts proved challenging under the current conditions. 
3. The removal of roads through the use of APB images, while intended to reduce noise, 

indirectly affected extraction accuracy by eliminating building shadows that often 
fall on road surfaces. 

4. In certain cases, overlaying methods improved the accuracy of protruding part extrac-
tion. However, in other instances, overlaying amplified false extractions, resulting in 
lower evaluation metrics. 

Enhancing the performance and applicability of our building protrusion and depres-
sion extraction model will involve focusing on three key areas in future work. Firstly, 
we will optimize model performance by exploring a wider range of hyperparameter 
configurations, investigating alternative loss functions (e.g., focal loss, Dice loss, IoU 
loss), and evaluating different model architectures such as SegNet and DeepLabV3+. 
We also plan to assess the impact of batch size and the number of training steps on 
accuracy and generalization. Secondly, acknowledging the significant impact of build-
ing shadows on model inference, we aim to utilize alternative types of input imagery 
and refine data augmentation strategies. These efforts are intended to reduce the model’s 
dependency on shadow features and promote the learning of intrinsic protrusion charac-
teristics. Finally, to address the limitations of manual annotation, we intend to explore 
semi-supervised learning approaches. This will help improve data scalability and enable 
model applications beyond the Sapporo region. 

In addition to the extraction of protruding and depressed parts, we plan to evaluate the 
effectiveness of the weighted overlay method under various conditions to investigate its 
capability in distinguishing building forms. This will contribute to more comprehensive 
morphological classification of urban structures based on aerial imagery. 
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Abstract. Air quality measurement is essential for decision-making and the estab-
lishment of public policies that promote health, well-being, and sustainability. This 
work proposes an autonomous air quality monitoring system powered by photo-
voltaic energy, aiming to contribute to the expansion of sustainable environmental 
monitoring networks. The developed system incorporates energy harvesting ele-
ments, using solar panels and power management integrated circuits (PMICs) to 
ensure energy autonomy and portability. A prototype was built to monitor car-
bon monoxide (CO) and transmit measured data through Wi-Fi. This prototype 
kept continuous operation for four days having only solar power and batteries 
as energy sources. These results highlight the feasibility of using photovoltaic 
energy in low-power systems, especially in remote or hard-to-access locations, 
reinforcing the importance of sustainable technologies for air quality monitoring. 
A methodology to design air quality measurement projects was also developed, 
enabling the replication of the system in different contexts. 

Keywords: Air quality · energy harvesting · photovoltaic energy · autonomous 
monitoring · PMIC 

1 Introduction 

Air quality measurement is a crucial action for decision-making and the establishment 
of public policies aimed at improving health, well-being, and sustainability. In 2022, the 
United Nations (UN) [1] adopted Resolution 73/300, recognizing the right of all people to 
a clean and healthy environment. This initiative aligns with the Sustainable Development 
Goals (SDGs), which seek to eradicate poverty, protect the environment, and ensure 
global prosperity. This work is aligned with SDG 7 (Affordable and Clean Energy), 11 
(Sustainable Cities and Communities), and 3 (Good Health and Well-being), focusing 
on the development of autonomous and sustainable air quality monitoring systems. 

Air pollution is one of the main environmental challenges, causing significant impacts 
on human health and ecosystems. Gases such as carbon dioxide (CO2), [2] carbon 
monoxide (CO), particulate matter (PM2.5 and PM10), and ozone (O3) are common 
pollutants that require constant monitoring [3].
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However, the implementation of large-scale measurement networks faces challenges, 
such as the need for energy and communication infrastructure in remote areas. In this 
context, energy harvesting, especially photovoltaic, emerges as a viable solution to power 
low-consumption monitoring systems. 

Therefore, this work proposes an autonomous air quality monitoring system using 
photovoltaic energy and power management integrated circuits (PMICs). The developed 
prototype demonstrates the feasibility of the approach, with promising results in terms of 
energy efficiency and portability. Additionally, a sizing methodology [2] for air quality 
measurement projects is presented, facilitating the replication of the system in different 
contexts [3]. 

In this initial prototype, a single air quality parameter (CO) and a specific transmis-
sion technology (Wi-Fi) were selected to validate the energy model and system design 
under low-power constraints. This choice was made to allow future scalability, as moni-
toring additional parameters or adopting alternative communication technologies would 
primarily require adjustments to energy provisioning, without significant changes to the 
system’s architecture. 

2 Energy Harvesting and Air Quality Monitoring Technologies 
and Applications 

This section presents a brief review of energy harvesting applications in air quality 
monitoring systems reported in the literature. Table 1 summarizes technical information 
for each application. Additionally, the two main technologies applied in this work (PMIC 
and air quality sensors) are briefly described. 

P. Das et al. [4] introduced an air quality monitoring system composed of various 
sensors to monitor NO2, O3, CO, SO2, particulate matter (PM1, PM10, PM2.5), as well 
as temperature and humidity. The system is also equipped with GPS and transmits data 
via Wi-Fi and NB-IoT. It features a backup battery and is powered by a photovoltaic 
(PV) module. Energy management is performed by a BQ25506 PMIC, which does not 
include a boost converter and requires an external voltage regulator. The system was 
designed with low energy consumption in mind, which motivated the adoption of the 
NB-IoT module due to its reduced power usage both during data transmission and in 
“sleep mode” periods. This work closely resembles the system developed in this article, 
except for the use of the BQ25504 in this study and the exclusive measurement of CO 
with Wi-Fi transmission only. 

Touati et al. [5] proposed a prototype capable of managing different energy sources, 
such as PZT (piezoelectric), RF (radio frequency), PV (photovoltaic), and thermal 
energy. The system includes sensors to measure temperature, CO, and NO2. The power 
capacity provided by the sources is 38.3 mW, which significantly exceeds the energy 
consumption of the nodes (approximately 0.85 mW). The prototype includes a star-
shaped printed circuit board, allowing the insertion of various sensors at the front tips 
and energy harvesting components at the rear tips, except for the core, where a PV 
cell was installed. This development employed multiple energy sources, unlike the PV-
only approach adopted in this study. Moreover, the demonstrated power output was 
substantially lower than that achieved in the prototype presented in this article.
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Crescini et al. [6] introduced a multiparametric sensor node that integrates measure-
ments of NH3, NO2, CO, H2S, NO, Cl2, temperature, and humidity. Multiple energy 
harvesting sources are also employed: vibration, using a piezoelectric material coupled 
to the system; a thermal energy harvesting material with a capacity of 0.5 mW; a PV cell 
for indoor use and another for outdoor application; and RF energy harvesting through 
electromagnetic waves. 

Yue et al. [7] developed a CO2 meter for indoor environments aimed at ensuring air 
quality control. Measurements were performed by a node powered by a photovoltaic cell 
(50 mm × 20 mm) and a supercapacitor as the energy storage system. The CO2 sensor 
can measure concentrations ranging from 0 to 5,000 ppm (parts per million) and must 
transmit data every 30 s throughout the week. An important feature of this project is the 
use of a PV cell in indoor environments. Considering the system’s energy requirements, 
the study defined a minimum illuminance of 200 lx to ensure system operation, which 
is feasible in office buildings. A low-power controller, the Moteino—a derivative of 
the conventional Arduino with reduced energy consumption—was used in this system. 
Additionally, the PMIC adopted was the LTC4071. In these two studies, the energy 
management system differed from the BQ25504 employed in this work. Furthermore, 
RF transmission was used instead of the Wi-Fi implementation adopted in this study. 

The monitoring system presented in [8] aims to measure a specific particle respon-
sible for COVID-19 transmission at two concentration levels: PM2.5 and PM10. The 
system performs indoor and outdoor measurements, transmitting data via the internet to 
a central unit for extended analysis. The total power consumption is 1.68 mW, powered 
by a supercapacitor designed to provide sufficient energy for reading and transmission 
tasks. Although initially powered by  a  5  V  DC  source,  the  system  can  be  adapted to 
use alternative power sources, such as a PV cell. Compared to the prototype developed 
in this study, a lithium battery was employed instead of a supercapacitor, and a 3.3 V 
operating voltage was u sed, already incorporating a PV panel.

Table 1. Summary of technical information from literature 

Ref PMIC SOURCE POWER NOMINAL VOLTAGE (V) 

[4] BQ25506 PV 269 mW 5 

[5] LTC3109 PZT, RF, PV 0.8 mW 4.1 

[6] LTC3109 PZT, RF, PV 20 mW 4.1 

[7] LTC4071 PV 118.9 µw 5.5 

[8] Not used SUPERCAP 1.68 mW 4.68 

2.1 PMIC 

The PMIC (Power Management Integrated Circuit) regulates the energy flow between 
the power source and other system components, including an energy storage system, 
which may consist of a battery or supercapacitor, and the system controller.
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The PMIC’s operation primarily involves Maximum Power Point Tracking (MPPT), 
a technique that maximizes the power extracted from energy sources. This component 
is also responsible for managing the energy flow, switching between available sources 
and the energy storage system. 

Table 2 provides a list of PMICs commercially available, including specifications 
extracted from the manufacturers’ datasheets. These devices typically measure around 
3.5 mm × 3.5 mm. Since PMICs are often integrated into compact circuits, such as 
prototypes, their reduced size is advantageous for project development [9]. Although 
some datasheets lack detailed information on power capacity or efficiency, all PMICs 
follow similar design principles and application guidelines. Notably, the BQ25570 model 
is frequently used in prototypes due to its broad input range for power sources, higher 
power capacity, and improved efficiency. 

In addition to photovoltaic energy, which serves as the primary energy source in this 
study, PMICs also support other energy sources identified in the literature. 

Table 2. Commercial PMICs adopted in the literature 

PMIC SOURCE PIN VIN(V) VOUT(V) EFIC (%) 

AEM10940 E-PEAS 50 mW 0.1–3.5 1.8–3.3 90 

S6E10 CYPRESS N/A 3.4 2.5–3.3 N/A 

BQ25506 TEXAS 400 mW 0.1–5.1 2–5.5 93 

MAX14720 MAXIM INT 250 mW 1.8–5.5 2.5–5.5 N/A 

SPV1050 STMICRO N/A 2.2–5.3 2.6–5.3 93 

LTC3109 MICROCHIP 50 mW 0.3–6 2.35–5 N/A 

LTC4071 LINEAR N/A 4–4.2 0.3–6 N/A 

2.2 Air Quality Sensors 

Sensors play a crucial role in control and automation systems [10] and are widely used 
in industries, automobiles, medical devices, and consumer electronics. In the context 
of air quality, sensors are designed to measure and monitor the presence of air pollu-
tants, detecting gases [10], particles, and other contaminants. Table 3 presents a selec-
tion of commercial sensors and multi-sensor models for air quality monitoring. The 
table includes parameters such as voltage, current, and power consumption, which were 
evaluated in this study.



Autonomous Air Quality Monitoring System 189

Table 3. Energy consumption of sensors 

SENSOR VOLTAGE 
(V) 

CURRENT 
(mA) 

POWER 
(mW) 

AR MICS6814 4.9–5 32 81 

AR ZP97 MP503 5 60 300 

AR PMS3003 5 80 400 

SGP30 2 48.8 97.6 

HDC1000 5 0.22 1.1 

XENSIV 3.3 10 30 

The sensors listed in Table 3 are designed to measure parameters such as carbon 
monoxide, nitrogen dioxide, PM2.5, PM10, temperature, and humidity. 

3 Methodology 

The proposed system consists of an air quality monitoring architecture composed of sen-
sors, microcontrollers, power management integrated circuits (PMICs), and photovoltaic 
modules. The sizing methodology includes the following steps: 

A - Energy Consumption Assessment 

Survey of the power required by sensors and microcontrollers, considering voltage, 
current and electrical power. 

B - PMIC Selection 

Choice of the appropriate power management circuit based on supported power and 
available energy sources [11]. 

C - Battery Sizing 

Calculation of the battery capacity required to ensure autonomy during periods 
without energy generation. 

D - Photovoltaic Module Sizing 

Definition of the power and number of solar panels required, considering local solar 
irradiation. 

The prototype developed uses the MiCS-6814 sensor for carbon monoxide (CO) mea-
surement, the ESP8266 microcontroller for data acquisition and transmission, and the 
BQ25504 PMIC for energy management. Data transmission is performed through Wi-Fi, 
with information sent every 30 min. A photovoltaic module was chosen as the energy 
source for this project. The steps of the proposed design methodology are described in 
the following steps: 

Steps A and B – Energy Required by Sensors and Controllers
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The first step in assessing the energy required by the system is to survey sensors 
of various types, such as temperature, humidity, CO2, and others, to gather information 
regarding their voltage, current, and power consumption. 

The second step involves evaluating the energy consumption of the main microcon-
trollers responsible for managing sensor data. For example, microcontrollers from the 
Arduino family, including the ESP8266 and its derivatives, operate at a voltage of 3.3 V 
and consume up to 500 mA when powered by external sources or USB ports, as per the 
component datasheets. 

To determine the total power required by the system, the combined power consump-
tion of the sensor and controller (including software and transmitter) is calculated using 
Eq. (1). 

PR = PS + PC (1) 

In which:

• PR: Total power required [W]
• PS: Power consumed by the sensor [W]
• PC: Power consumed by the controller [W] 

In cases where power consumption is not directly provided in datasheets, it can be 
calculated as the product of the nominal voltage and current of the component. 

The daily energy consumption of the system is then evaluated based on usage levels. 
The average energy consumption is given by Eq. (2): 

E = PR × Td × Th (2) 

In which:

• E: Monthly energy consumption of the component or block [Wh/month]
• PR: Power required by the component or block [W]
• Td: Number of days of operation per month
• Th: Number of hours of operation per day 

In the sequel, the capabilities of the most common PMICs should be evaluated to 
ensure they meet the power requirements of the integrated components. The PMICs 
analyzed typically support input voltages ranging from 100 mV to 6 V, output voltages 
from 0.3 V to 6 V, and manageable power levels up to 400 mW. There are a lot of PMICs 
that support the use of batteries or capacitors and can handle various energy harvesting 
sources. 

Step C – Battery Sizing 

Battery sizing considers three key aspects [12]: 

1. The daily energy requirement, calculated as the sum of the energy consumption of 
each component using Eq. 4. 

2. The number of days the battery must be able to power the system in the absence of 
energy generation from the primary source. 

3. The depth of discharge (DoD).
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The daily energy requirement is quantified in Watt-hours (Wh). This value accounts 
for the power required by the system over the total time the battery must support the load. 
The depth of discharge is a critical factor in battery durability, as a higher DoD reduces 
the battery’s lifespan. For systems installed in remote or hard-to-access locations, a 
longer battery life is preferred to minimize maintenance costs. 

Commercially available batteries have varying DoD values (e.g., 20%, 50%, 80%). 
The DoD indicates the remaining charge percentage after the specified period of energy 
absence. The battery capacity is calculated using Eq. (3). 

Cb = E 

Vr · Dod (3) 

In which:

• Cb: Battery capacity [Ah]
• E: Monthly energy consumption of the component or block [Wh]
• Vr: Required voltage of component or block [V]
• DoD: Depth of discharge (expressed as a decimal, e.g., 0.5 for 50%) 

Step D – Photovoltaic Module Sizing 

The sizing of photovoltaic modules requires parameters related to the system archi-
tecture and the environmental conditions of the installation site. This step involves two 
stages [4]: 

1. Determining the total power of the photovoltaic module array based on environmental 
parameters. 

2. Selecting a commercial module model and configuring the electrical connections. 

The total power of the photovoltaic array is calculated using Eq. (4) 

PFV = E 

TD · HSPma (4) 

In which:

• PFV: Total power of the photovoltaic array [W]
• E: Monthly energy consumption of the component or block [kWh/month]
• TD: Performance ratio of photovoltaic modules (typically 70% to 80%)
• HSPma: Annual average peak sun hours [Wh/m2/day], which represents the daily 

solar irradiation divided by the Standard Test Conditions value for irradiance 
(1,000 W/m2). This value is location-specific and can be obtained using software 
tools such as PVSyst© or databases like the [13]. 

The number of photovoltaic modules required is determined using Eq. (5) 

Quatmod = PFV 

Potplaca 
(5) 

In which:

• Quatmod : Number of modules required
• PFV: Total power of the photovoltaic array [W]
• Potplaca: Power rating of the commercial module [W]
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4 Prototype 

The prototype, designed according to the proposed methodology, integrates the Sensor 
+ Software + Transmission components as follows: 

4.1 Sensor and Microcontroller 

The carbon monoxide (CO) sensor selected for the prototype is the MiCS-6814, which 
operates at 3.3 V or 5 V and has a maximum power consumption of 88 mW. 

The ESP8266 microcontroller from the Arduino family was chosen due to its Wi-Fi 
communication capability, enabling data transmission via telemetry. Despite its inte-
grated Wi-Fi module, the ESP8266 maintains low energy consumption, with 4 MB of 
flash memory for medium-complexity programming in C/C++. Its specifications include:

• Operating voltage: 3.3 V or 5 V
• Maximum current: 46 mA
• Maximum power consumption (at 3.3 V): 151 mW 

4.2 Power Management and Energy Harvesting 

The BQ25504 PMIC was selected due to its compatibility with solar energy and battery 
inputs, providing the necessary voltage and power for the sensor and microcontroller. 
However, the CJMCU-25504 board which integrates BQ25504 lacks an adjustable DC 
boost converter. To ensure stable voltage output, an external converter + regulator was 
added. 

4.3 Energy Optimization 

To optimize energy consumption, the microcontroller was programmed to enable the 
“sleep mode” between data transmissions. During this period, all processors are deac-
tivated, except for the Real-Time Protocol (RTP), which tracks the sleep duration. The 
system wakes up every 30 min, transmits data, and returns to sleep, minimizing energy 
usage. 

4.4 System Architecture 

The prototype architecture (Fig. 1) consists of: 

1. A solar panel as the primary energy source, connected to the BQ25504 PMIC. 
2. A battery to maintain input voltage during periods of low or no solar irradiation with 

3.100 mAh 
3. The ESP8266 microcontroller, powered by the PMIC, collects data from the sensor 

and transmits it via Wi-Fi to a web server.
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Fig. 1. The prototype circuit. 

4.5 Data Transmission and Telemetry Simulation 

A web server was configured on a laptop connected to the same Wi-Fi network as the 
ESP8266 to simulate telemetry. Data is transmitted every 30 min [14], ensuring efficient 
energy use while maintaining system functionality. Figure 2 presents the data obtained 
from de ESP8266 readings. It records the date and time of each reading, along with the 
CO value measured at that moment, at 30 min intervals. 

Fig. 2. Screen results from java notebook 

5 Results and Discussion 

The prototype was assembled and installed at an urban residential rooftop, as shows 
Fig. 3. It was fixed at the rooftop with an inclination of 23°, which is close to the local 
latitude, to improve the exposition to solar irradiance. 

The city chosen for testing the prototype was Guarulhos, state of São Paulo - Brazil, 
but precisely at latitude and longitude −23.44, −46.49.
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Fig. 3. Prototype 

With these conditions, the prototype kept operating continuously for four days. The 
results demonstrated that the system maintains a 3.3 V supply for the microcontroller, 
with the battery being charged by the solar panel during the day. The graph shown in 
Fig. 4 was generated using measurement data collected over a single day for the following 
variables: battery voltage, voltage supplied by the solar panel, and voltage consumed by 
the architecture. Table 4 presents the data collected to generate Fig. 4. 

It was observed that during the nighttime period, from 18:00 to 21:00 there is a 
sharp decline in the energy supply provided by the photovoltaic panel. This decrease is 
reversed at dawn, between 5:00 and 7:00 in the morning. 

Between 21:00 and 5:00, the energy supply from the photovoltaic panel shows rel-
ative stability. However, the system’s architecture voltage is continuously maintained 
during these variations by the battery integrated into the system, which can sustain the 
system’s operation for up to two days in the absence of solar energy. 

Table 4. 24 h voltage variation measured during the prototype operation. 

Time Voltage Supplied Battery 
(V) 

Voltage Supplied by the 
Solar Panel (V) 

Voltage Consumed by the 
architecture (V) 

12 3.7 5.0 3.3 

13 3.7 5.0 3.3 

14 3.7 5.0 3.3 

15 3.7 5.0 3.3 

16 3.7 5.0 3.3 

17 3.7 5.0 3.3 

18 3.7 5.0 3.3

(continued)
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Table 4. (continued)

Time Voltage Supplied Battery
(V)

Voltage Supplied by the
Solar Panel (V)

Voltage Consumed by the
architecture (V)

19 3.7 4.5 3.3 

20 3.7 3.5 3.3 

21 3.7 1.0 3.3 

22 3.7 1.0 3.3 

23 3.7 1.0 3.3 

24 3.7 1.0 3.3 

01 3.7 1.0 3.3 

02 3.7 1.0 3.3 

03 3.7 1.0 3.3 

04 3.7 1.0 3.3 

05 3.7 1.0 3.3 

06 3.7 3.5 3.3 

07 3.7 5.0 3.3 

08 3.7 5.0 3.3 

09 3.7 5.0 3.3 

10 3.7 5.0 3.3 

11 3.7 5.0 3.3 

The maximum power consumed during data transmission was 356 mW, while the 
average consumption in standby mode was 118 mW. 

The proposed sizing methodology was validated, with the calculation spread-
sheet allowing precise specification of the necessary components. The use of photo-
voltaic energy proved efficient, especially in remote or hard-to-access locations where 
conventional electrical infrastructure is unfeasible.
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Fig. 4. 24 h Voltage variation during the prototype operation. 

6 Conclusion 

This work demonstrated the feasibility of autonomous air quality monitoring systems 
powered by photovoltaic energy. The proposed sizing methodology facilitates the repli-
cation of the system in different contexts, contributing to the expansion of sustain-
able environmental monitoring networks. The use of photovoltaic energy harvesting 
proved to be efficient for powering low-consumption architecture, especially in remote 
or hard-to-access locations. 

As a future perspective, the investigation of other energy harvesting sources, such 
as piezoelectric and thermoelectric, is suggested to complement or replace photovoltaic 
energy under certain conditions. Additionally, the integration of low-power communi-
cation networks, such as LoRaWAN, can expand the system’s applicability in areas with 
limited Wi-Fi coverage. 

References 

1. United Nations: Resolution 73/300 (2019) 
2. Heidari, A., et al.: Air Quality Monitoring: A Comprehensive Review. Environmental 

Science & Technology (2021) 
3. Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., Musilek, P.: Energy harvesting 

sources, storage devices and system topologies for environmental wireless sensor networks: 
a review. Sensors 18, 2446 (2018). https://doi.org/10.3390/s18082446x 

4. Das, P., et al.: Energy harvesting-enabled 5G advanced air pollution monitoring device. In: 
2020 IEEE 3rd 5G World Forum (5GWF), pp. 218–223. IEEE (2020) 

5. Touati, F., Legena, C., Gali, A., Crescini, D., Mnaover, A.: Renewable energy-harvested 
sensor systems for air quality monitoring. In: 2014 26th International Conference on 
Microelectronics (ICM), pp. 160–163 (2014)

https://doi.org/10.3390/s18082446x


Autonomous Air Quality Monitoring System 197

6. Crescini, D., Touati, F., Galli, A.: Multiparametric sensor node for environmental monitoring 
based on energy harvesting. Atmosphere 13(2), 321 (2022) 

7. Yue, X., et al.: Development of an indoor photovoltaic energy harvesting module for 
autonomous sensors in building air quality applications. IEEE Internet Things J. 4(6), 
2092–2103 (2017) 

8. Kuncoro, C.B.D., Adristi, C., Asyikin, M.B.Z.: Smart wireless particulate matter sensor 
node for IoT-based strategic monitoring tool of indoor COVID-19 infection risk via airborne 
transmission. Sustainability 14(21), 14433 (2022) 

9. Kurian, D., et al.: Self-powered IOT system for edge inference. In: 2020 21st International 
Symposium on Quality Electronic Design (ISQED), pp. 302–305. IEEE (2020) 

10. Bhat, G., et al.: Self-powered wearable IoT devices for health and activity monitoring. Found. 
Trends® Electron. Des. Autom. 13(3), 145–269 (2020) 

11. Kjellby, R.A., et al.: Long-range & self-powered IoT devices for agriculture & aquaponics 
based on multi-hop topology. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 
pp. 545–549. IEEE (2019) 

12. Villalva, M.G.: Photovoltaic Solar Energy: Concepts and Applications. Editora Érica (2015) 
13. CRESESB – Center of Reference to Solar and Eolic Energy Sérgio de S.Brito. https://www. 

cresesb.cepel.br/index.php?section=sundata 
14. Kjellby, R.A., et al.: Self-powered IoT device based on energy harvesting for remote appli-

cations. In: 2018 IEEE International Conference on Advanced Networks and Telecommuni-
cations Systems (ANTS), pp. 1–4. IEEE (2018)

https://www.cresesb.cepel.br/index.php%3Fsection%3Dsundata
https://www.cresesb.cepel.br/index.php%3Fsection%3Dsundata


How Clean is the Air You Breathe During Urban 
Walk? A Case Study of Central London 

Nikhil Ravindra1 , Amin Al-Habaibeh1(B) , and Benachir Medjdoub2 

1 Product Innovation Centre, Nottingham Trent University, Nottingham, UK 
nikhil.ravindra2024@my.ntu.ac.uk, amin.al-habaibeh@ntu.ac.uk 

2 Architecture Department, Nottingham Trent University, Nottingham, UK 
benachir.medjdoub@ntu.ac.uk 

Abstract. This paper presents a case study on air quality in Central London 
with a focus on particulate matter (PM10 and PM2.5). The relationship between 
road width, traffic patterns, wind direction, building orientation, and particulate 
matters (PM10 and PM2.5) concentrations is explored in this experimental study 
via a walking journey. GPS geographical analysis and portable air quality sensors 
are used to assess the air quality. The key results indicate that narrower roads with 
high buildings in general exhibit irregular PM spikes which could be explained by 
trapped emissions and busy traffic. Larger roads (≥20  m  in  width)  have  presented  
a more stable air quality which can be explained by improved air circulation and 
consistent traffic flow. The results demonstrates the need for enhanced measures 
with specialized interventions such as the plantation of green walls and trees 
(green infrastructure) combined with improved traffic control. The results also 
indicate the importance of traffic management and the importance of policies and 
strategies such as London’s Urban Greening Factor (UGF), London Low Emission 
Zone (LEZ), Ultra Low Emission Zone (ULEZ), Congestion Charge Zone, and 
the support of electric transportation. The novel experimental methodology and 
findings presented in this paper provide a strong foundation for a broader and more 
comprehensi ve future study.

Keywords: air quality · green infrastructure · artificial intelligence · electric 
mobility · smart cities 

1 Introduction 

It has been established that exposure to air pollution is a key risk factor for human health 
[1]. According to new figures in 2025, over 90% of neighborhoods in England and Wales 
have high levels of air pollution, increasing the risk of cancer and heart attacks. Based 
on the analysis of Friends of the Earth on governmental statistics of Nitrogen Dioxide 
(NO2) and particulate matter PM2.5 levels between 2021 and 2023, more than 33,000 
neighborhoods had air pollution levels above the World Health Organization (WHO) 
recommended safe threshold, with London residents being the most severely impacted, 
making it one of the most polluted places in the UK [2].
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This covers every neighborhood in the city of London as well as the six boroughs 
of London: Hackney, Islington, Kensington and Chelsea, Newham, Tower Hamlets, 
and Westminster. Fossil fuel burning is found to be the main source of NO2. Nearly 
half of the air pollution in London is caused by polluting vehicles followed by power 
stations, affecting all its boroughs and not just central London [2]. The main sources of 
PM2.5 pollution are industry and road transportation; with significant contribution from 
domestic combustion due to the usage of wood-burning stoves [2]. 

However, because the neighborhoods with the highest pollution levels also had the 
fewest car owners, the study discovered that many residents of the most polluted regions 
were dealing with issues brought on by others [2]. Unfortunately, in several locations, 
the people least responsible for air pollution are the ones who are facing higher negative 
impacts of it [3]. 

The first person officially on record to have air pollution to be the cause of death was 
Ella Adoo-Kissi Debrah, a child who passed away from asthma, in 2013 [2]. A coroner 
from south London in 2020, made history by citing air pollution as the cause of Ella’s 
death [2]. Her mother fought for years to have the effects of air pollution recognized as 
a cause of death of the nine-year-old who lived within 30 m of the South Circular, one 
of London’s busiest roads [2]. 

As a remembrance, her statue was unveiled on the 4th of April 2025 in London, 
Mountsfield Park, SE6 1AN [4]. 

A recent shift towards EVs and stricter policies have helped combat air pollution. 
Transport for London (TfL)’s initiative of an Ultra-Low Level Emission Zone (ULEZ) 
in April 2019 has already made a substantial difference to the air quality levels [5]. 
Although in 2023, the city has decided to extend the ULEZ, more needs to be done to 
combat the global challenge of air pollution. 

This paper investigates an experimental pilot case study in Central London during a 
walking process to explore air quality using a GPS location sensor and a portable PM10 
and PM2.5 sensor. 

2 Research Outline 

Most of the airborne toxic particles are extremely small to be visible to the naked eye. 
Air pollution can lead to an increased risk of dementia, and other life-changing illnesses 
including lung diseases and asthma [6]. Nearly half a million Londoners are living with 
asthma, making them more vulnerable to toxic air impacts [6]. Every year, air pollution 
leads to the death of thousands of premature in London [6]. The study indirectly addresses 
the topic of energy informatics linked to green mobility. 

This paper aims to sample the current air quality in Central London (PM10 and 
PM2.5) during a walking journey and discuss the experimental findings; and the potential 
way forward to enhance air quality via the use of electric vehicles (EV), and promote 
low-carbon transit in addition to other suitable measures.
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3 Literature Study 

3.1 Engine Idling and Ultra-Low Emission Zone 

Research by the World-Wide Fund for Nature (WWF) highlights the fact that switching 
off an idling car engine when stopped for 10 s or more has multiple benefits; it is energy 
efficient, economical, reduces air pollution, slows climate change, and overall better 
for the planet. Nevertheless, repetitively turning on and off the car’s engine can cause 
wear to some parts, unless it has been built with stop-start technology. To overcome this 
challenge many city councils around the globe recommend turning off the engine when 
the vehicle is stopped for a minute or more [5]. 

To combat engine idling, the London city corporation has come up with measures 
such as penalties for non-compliance, placing ‘no idling’ signs in hotspots, and the pan-
London idling action project supported by the Mayor’s air quality fund [7]. Although 
numerous efforts including ULEZ have been taken to reduce the city’s air pollution 
and improve air quality, there is more to be achieved considering the sheer volume of 
road transport emissions [6]. Most importantly, even low levels of emissions can cause 
significant damage to human health [8]. 

The other two tiers of emission control regulations that play a vital role are the 
Congestion Charge Zone (CCZ) and the Expanded Ultra-Low Level Emission Zone 
(EULEZ) [9]. Since the expansion of ULEZ to all London boroughs, analysis by [10] 
shows fluctuating traffic congestion levels, given the complexities of the city’s antiquated 
road network. The rush hour traffic is relentlessly dense, leading to slow-moving traffic, 
which is a core issue causing an increase in transport emissions. In such scenarios, can 
over-reliance on ULEZ and greater EV uptake reduce transport emissions and improve 
air quality? 

3.2 Electric Vehicles and Integration Using Artificial Intelligence 

As EVs are heavier than petrol or diesel cars, they most likely produce more nanoparticle 
matter pollution from their tires and brakes [11]. The production process is one of the 
primary reasons why EVs are not environmentally friendly. Emissions from EV pro-
duction are higher than those from conventional automobiles. The lithium-ion batteries, 
which require mining operations to obtain their rare earth metals, are the cause of this. 
Charging EVs requires electricity, which can result in the burning of fossil fuels [12]. 

Even if the production of EVs may be harmful to the environment in some aspects, 
it is still far less than the pollutants that traditional cars emit. By 2050, electricity must 
only come from renewable sources to reach net zero in the UK [12]. The use of AI is 
essential in the energy management of EV, as it improves user experience, optimizes 
energy expenditure, enhances coordination, and has advanced user data understanding 
[13]. Expanded infrastructure incorporating enhanced accessibility of EV chargers, not 
just improves traffic flow but also cuts down PM2.5 emissions by 1.3 to 2.2% [9]. AI-
enabled smart and optimized charging can lower carbon emissions by up to 40% and 
annually could save nearly 800 lb of CO2 per vehicle, contributing to sustainable energy 
for UK EV fleet management [12]. However, reducing the number of automobiles on 
the road is one of the most effective strategies to lower local air pollution [14].
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3.3 Innovative Green Infrastructure 

Just shifting to EVs might not significantly help in reducing the air quality problem. 
Private vehicles have adverse impacts on health and quality of life, particularly consid-
ering the emissions, air quality, and congestion caused. Well-connected green mobility 
corridors can address the need for sustainable mobility means by promoting a shift away 
from cars to walking, cycling, or micro-mobility [15, 16]. Green mobility corridors use 
a series of swales, street trees, rain gardens, and pervious pavements, creating a cooler 
oasis and promoting active mobility (Fig. 1). It is a type of blue-green infrastructure 
(BGI) that has the potential to reduce the urban heat island (UHI), reduce greenhouse 
gas (GHG) emissions, and improve air quality, due to the greater presence of vegetation 
and water [17]. 

Micro-mobility devices include bicycles, velomobiles, e-scooters [18], e-
skateboards, shared bicycle fleets, and electric pedal-assisted bicycles. These operate 
at speeds not exceeding 28 miles per hour (mph), lightweight mini-vehicles that can be 
privately owned or shared, and can be human-powered or electric. Micro-mobility is 
economical, flexible, and sustainable, having the potential to reduce reliance on private 
vehicles; especially for short-distance travel [17]. Nevertheless, some have traffic risk 
issues associated with them, including accidents [18]. Urban air quality, particularly in 
relation to PM10 and PM2.5, could also be influenced by other urban factors [19]. 

Fig. 1. Photo of an e-bike facility in Nottingham; and green infrastructure along river Manifold 
in Ilam village. 

4 Methodology 

The study presents a ground-level air quality monitoring exercise that was carried out 
in Central London. Data was collected using a hand-held portable battery-powered air 
quality monitoring device which combines sensor and logger. The device’s battery can 
be electrically charged.
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The  device  (Fi  g. 2) is a Series 500 – Portable Air Quality Monitor sensor head with 
a data logger by Aeroqual company. The study focused on the emissions of particulate 
matter 10 µm (PM10) and particulate matter 2.5 µm (PM2.5) during a walking journey 
in Central London. To account for interferences (e.g. humidity), the device incorporates 
algorithms into the laser particle counter (LPC) for PM, which employs optimized signal 
processing with low-noise electronics. An air pollutant level in this paper refers to the 
concentration of pollutants at a level of nearly a meter from the ground. 

MATLAB software was utilized to visualize and analyze the impact on air quality. 
Google Maps were used as a platform for spatial mapping of the route taken from start 
to endpoint. Ethical approval was received in relation to this work. 

Fig. 2. Photo of the air quality monitoring device used in this study. 

5 Data Collection 

A nearly  2  h  walk  in  Central London streets (Fig. 3) in an ULEZ, collecting both, PM10 
and PM2.5 data to measure road-side air quality levels in the heart of the smart city 
of London around noon on a spring day. The data collected was at a frequency of one 
minute per sample. The walking journey took place as part of The City of London Urban 
Climate Walking Tour [20]. 

The starting point was the Martha Smith Memorial water fountain and the finishing 
point was at Undershaft Street, covering nearly 1.2 miles, on the 1st of March 2025 
(Saturday). Global Positioning System (GPS) application was used to record the location. 
Average road widths were calculated from Google Earth Engine (GEE), by measuring the 
distance between opposite buildings. GEE as a cloud-based platform is used to process 
and analyze satellite imagery. Images were taken by the research team or from Google 
Map [21], Google Earth or Google Street view as referenced on each image.
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Fig. 3. Route taken from start to end point, highlighted on Google Maps and Google Earth 3D 
image.
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The Met Office [22] reported the atmospheric condition during the walk time was 
clear sky, and temperature was between 7 to 8 °C. The real feel temperature was between 
4 to 5 °C; and relative humidity was between 60 to 67% [23]. Figure 4 presents an example 
of the analysis of the angle between the wind direction as obtained from the Met office 
and the street angle as obtained from Google Map [21]. 

Table 1. Approximate time (rounded off to the nearest minute) and location of the urban walk. 

Start time End time Minutes Location Avg. Road width 

11:18 AM 11:32 AM 14 M.S. Memorial water fountain, 
Finsbury Sq. 

19 m 

11:32 AM 11:54 AM 22 Wilson St 14 m 

11:54 AM 12:02 PM 08 Eldon St 13 m 

12:02 PM 12:15 PM 13 Broadgate Circle Pedestrian-only 

12:15 PM 12:16 PM 01 Broad St Pl 17 m 

12:16 PM 12:19 PM 03 Liverpool St 24 m 

12:19 PM 12:20 PM 01 White Hart Ct Pedestrian-only 

12:20 PM 12:21 PM 01 Alderman’s walk Pedestrian-only 

12:21 PM 12:33 PM 12 Passageway from Alderman’s Walk to 
Bishopsgate 

Pedestrian-only 

12:33 PM 12:34 PM 01 Bishopsgate (A10) 24 m 

12:34 PM 12:38 PM 04 Camomile St (A1211) 20 m 

12:38 PM 12:48 PM 10 St Mary Axe 13 m 

12:48 PM 13:06 PM 18 Undershaft 19 m 

Total time 108 min (1 h 48 min) 

Table 2. Comparison between PM levels and the absolute angle difference between the road and 
the wind direction. 

Location Wind speed Angle of road I Angle 
difference I 

PM10 
levels 

PM2.5 
levels 

Finsbury Sq N-E 
4.9 mph 

97° 52° 25.86 µg/m3 10.43 µg/m3 

Wilson St 21° 24° 33.86 µg/m3 10.95 µg/m3 

Eldon St 116° 71° 36.25 µg/m3 11.00 µg/m3 

Liverpool St N-E 
6.0 mph 

113° 68° 24.67 µg/m3 7.33 µg/m3 

Bishopsgate (A10) 29° 16° 21.00 µg/m3 5.00 µg/m3 

Camomile St (A1211) 123° 78° 21.75 µg/m3 6.25 µg/m3 

St Mary Axe 33° 12° 18.30 µg/m3 5.50 µg/m3

(continued)
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Table 2. (continued)

Location Wind speed Angle of road I Angle
difference I

PM10
levels

PM2.5
levels

Undershaft 47° 2° 16.22 µg/m3 4.39 µg/m3 

Fig. 4. Absolute angle calculation example for Wilson St (presented on background from on 
Google Maps). 

6 Results 

Figure 5 presents the concentration of PM10 and PM2.5 over time; visualized using MAT-
LAB with key locations as in Fig. 6. The results are analyzed in conjunction with Table 1. 
Three scenarios are studied here: wider roads (≥20 m), narrower roads (13–19 m), and 
pedestrian-only zones. The road width is the average width for the corresponding street 
(Fig. 6). 

Fig. 5. PM10 and PM2.5 concentration over time visualization using MATLAB.
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Fig. 6. PM10 and PM2.5 levels at different locations presented on a Google Map background. 

Of the total 108 min, 8 min were spent along wider roads, 73 min along narrower 
roads, and a total of 27 min in the pedestrian zones. The key observations and data 
measurements for the three scenarios are presented in Tables 3A, 3B and 3C. 

Table 3A. Average PM levels in wider roads (≥20 m). 

Road, width, and time PM10 
levels 

PM2.5 
levels 

Summary 

Liverpool St 
(24 m, 12:16 PM - 12:19 PM) 

24.67 µg/m3 7.33 µg/m3 Both PM10 and PM2.5 levels are 
relatively high 

Bishopsgate 
(24 m, 12:33 PM - 12:34 PM) 

21.00 µg/m3 5.00 µg/m3 Variations in both PM10 and 
PM2.5 levels, possibly due to 
increased vehicular activity on A 
class road 

Camomile St 
(20 m, 12:34 PM - 12:38 PM) 

21.75 µg/m3 6.25 µg/m3 

Table 3B. Average PM levels in narrower roads (13–19 m). 

Road, width, and time PM10 
levels 

PM2.5 
levels 

Summary 

M.S. Memorial Water 
Fountain, Finsbury Sq 
(19 m, 11:18AM - 11:32 AM) 

25.86 µg/m3 10.43 µg/m3 Moderate fluctuation of PM10 
and PM2.5 levels, however, 
overall concentrations are 
relatively stable

(continued)



How Clean is the Air You Breathe During Urban Walk? 207

Table 3B. (continued)

Road, width, and time PM10
levels

PM2.5
levels

Summary

Wilson St 
(14 m, 11:32AM - 11:54 AM) 

33.86 µg/m3 10.95 µg/m3 PM10 shows more variations in 
comparison to PM2.5 which 
fluctuates slightly. The reason 
could be because of the longer 
time spent along this street 

Eldon St 
(13 m, 11:54 AM - 12:02 PM) 

36.25 µg/m3 11.00 µg/m3 A spike in PM10 levels before 
declining, but PM2.5 remains 
relatively stable 

St Mary Axe 
(13 m, 12:38 PM - 12:48 PM) 

18.30 µg/m3 5.50 µg/m3 A decrease in PM10 and PM2.5 
levels is observed during this 
time 

Undershaft 
(19 m, 12:48 PM - 13:06 PM) 

16.22 µg/m3 4.39 µg/m3 PM10 levels fluctuate, mostly 
because of moving or idle traffic 

Table 3C. Average PM levels in pedestrian-only zones. 

Pedestrian zone and time PM10 
levels 

PM2.5 levels Summary 

Broadgate Circle 
(12:02 PM - 12:15 PM) 

27.62 µg/m3 10.15 µg/m3 The PM10 and PM2.5 
concentrations here would most 
likely reflect general background 
levels or emissions from nearby 
road sources, indicating no clear 
street-width influence 

Broadgate St 
(12:15 PM - 12:16 PM) 

20.00 µg/m3 6.00 µg/m3 

White Hart Ct 
(12:19 PM - 12:20 PM) 

23.00 µg/m3 6.00 µg/m3 

Alderman’s Walk 
(12:20 PM - 12:21 PM) 

20.00 µg/m3 6.00 µg/m3 

The passageway from 
Alderman’s Walk to 
Bishopsgate 
(12:21 PM - 12:33 PM) 

19.17 µg/m3 5.83 µg/m3 

PM10 shows more significant variations, with peaks observed mostly on narrower 
roads and around midday. The presence of tall buildings and limited roadside vegetation 
could be the possible reasons for the spike in levels. PM2.5 remains lower and more 
stable, with occasional minor fluctuations. Interestingly, from the measurements, wider 
roads seem to have more stable air quality trends, while narrower roads show increased 
variability in PM concentrations. 

From the results of the data collected and analysis, wider roads seem to stabilize air 
quality via better dispersion and steady traffic flow, diluting pollutants. Narrow roads
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seem trap emissions due to poor dispersion and stop-start busy traffic, causing erratic 
PM spikes. Solutions could include green walls on narrow streets and tree planting with 
optimized traffic flows on both road types. 

Particularly on narrower roads such as Wilson St., the study found that PM10 levels 
often exceeded the WHO’s 45 µg/m3 average guideline and the UK’s daily mean limit of 
50 µg/m3. Although, typically lower, a few PM2.5 levels still came close to the WHO’s 
24-h limit of 15 µg/m3, indicating that air quality issues persist even after London 
implemented ULEZ regulations. 

As  shown  in  Fig  s. 7 and 8, the findings demonstrate how the absolute angle difference 
between the road orientation and the direction of the predominant wind affects PM10 
and PM2.5 concentrations. 

Fig. 7. Correlation between PM10 levels and absolute angle difference in conjunction with 
Table 2.
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Fig. 8. Correlation between PM2.5 levels and absolute angle difference in conjunction with 
Table 2. 

This suggests that pollution dispersion may be less effective, and PM may concentrate 
when the wind is more transverse or crosswise to the road (near to 45° absolute angle 
difference). This tendency is noticeable for both PM10 and, PM2.5 concentrations. This 
could be explained by the location, height, and orientation of the buildings with respect 
to the road and wind directions, see Fig. 9. 

Fig. 9. Explanation of the PM10 and PM2.5 results (Background image source: Google Earth).
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7 Conclusion and Future Work 

There has been significant attention given in many cities, including London, to prioritize 
cleaner air by investing in public transportation and switching to EVs [2]. This would 
not only help reduce emissions that contribute to global warming but also improve the 
quality of air. Millions of young and old individuals, who are particularly vulnerable 
to the negative effects of poor air pollution are expected to benefit from this. Through 
regulations such as the Urban Greening Factor (UGF), which requires green features in 
new construction, London’s urban greening efforts seek to improve biodiversity, public 
health, and climate resilience [24]. 

This study was an experimental measurement exercise conducted to explore air 
quality in Central London. The research contributes to the broader discourse on low-
carbon urban transitions, offering actionable recommendations for policymakers, plan-
ners, and environmental scientists working towards energy informatics and sustainable 
urban futures. It was found that urban planning, wind direction, and traffic density con-
tribute to changes in air quality. The focus of this study is on particulate matters (PM10 
and PM2.5). The relationship between road orientation relative to the north direction, 
width, traffic patterns, and particulate matter (PM10 and PM2.5) concentrations is also 
explored. 

The key results indicate that the narrower roads with high buildings in general exhibit 
irregular PM spikes which could be explained by trapped emissions and busy traffic, this 
inline with the findings in [25]. The results also demonstrates the need for enhanced 
measures with specialized interventions such as the plantation of green walls and trees 
(green infrastructure), in line with [26], combined with improved traffic control. Further 
work is also still needed to provide guidelines on the best approach for urban design. 
In addition, innovative green infrastructure and blue infrastructure combined with AI 
to monitor and control air quality can significantly help in increasing the area of green 
cover and blue areas in the built environment. 
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Abstract. This study explores how digital technologies and Artificial Intelligence 
(AI) contribute to climate resilience and energy adaptation in energy-intensive 
industries (EIIs). Based on an international survey conducted under IEA IETS Task 
22, responses from 29 experts highlight a growing interest in AI applications such 
as predictive maintenance, demand forecasting, and process optimization. While 
AI is perceived as a key enabler of sustainability, most implementations remain in 
pilot phases due to high costs, integration complexity, and workforce skill gaps. 
Climate resilience is recognized but remains a secondary focus compared to energy 
efficiency. The findings also reveal a strong link between supportive policy envi-
ronments and digital readiness, emphasizing the need for coordinated regulatory 
and technological efforts. This study contributes to the literature by connecting 
industrial stakeholder perspectives with broader digitalization and decarboniza-
tion agendas, offering insights to guide future research and policy development 
for a more resilient and sustainable industrial sector. 

Keywords: Artificial Intelligence · Digitalization · Climate Resilience · 
Energy-Intensive Industries · Energy Adaptation 

1 Introduction 

Energy-intensive industries (e.g., iron and steel, chemicals, cement, aluminum, and pulp 
and paper) are major global emitters of carbon dioxide [1, 2], largely due to their reliance 
on fossil fuels for industrial processes [3]. Their dependence on fossil fuels worsens cli-
mate change, making it crucial to transition to renewable energy sources [4, 5]. Integrat-
ing renewable energy sources can help address energy supply challenges [3]. However, 
as more energy comes from renewable sources (e.g., wind and solar), the old way of 
managing the traditional hierarchical power system becomes less effective [6]. This is 
because renewable energy generation depends on weather conditions [5] making its 
output unpredictable and creating challenges for grid reliability [6]. To ensure a stable 
power supply, improved energy storage and smarter energy connections are needed [5].
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Additionally, activating power plants just to meet very high peak demand for a short 
duration is expensive and environmentally damaging [7], further highlighting the need 
for more efficient energy management strategies. 

Simultaneously, climate change further disrupts energy systems and business strat-
egy, requiring adaptation strategies across industries [8]. For instance, the food industry 
faces climate change impacts particularly on production and supply chain [8]. Simi-
larly, thermal power plants consume and withdraw significant amounts of water, creat-
ing a strong interdependence between energy production and water resources [6]. As 
renewable energy integration increases, the flexible operation of energy-water resources 
becomes crucial for maintaining system reliability [6]. However, energy flexibility in 
manufacturing remains underexplored [5], partly due to a lack of awareness among com-
panies regarding the flexibility potential of their production facilities and its associated 
benefits [4]. 

Digital technologies and AI are seen as key enablers of the green transition. For 
example, the integration of ICT (Information and Communication Technologies)/ Inter-
net of Things (IoT) with AI is considered the next generation of the traditional power 
grid, enabling self-decision-making through demand response mechanisms for Demand-
side Management (DSM) [9]. Advanced digital technologies like cloud computing, IoT, 
DT, and big data support circular production and smart manufacturing by enabling data-
driven processes [10]. Digital Energy Platforms (DEPs) can integrate data from various 
sources (e.g., energy markets, weather forecasts) using Industrial Internet of Things 
(IIoT) technologies to facilitate optimized energy management and adaptation to fluctu-
ating energy supply and demand [5]. Additionally, AI algorithms can help reduce energy 
consumption and carbon emissions in energy-intensive industries [11]. 

Despite the growing recognition of digital technologies, including AI, in enabling 
sustainable industrial processes, their implementation still faces significant challenges. 
A study claims that while IoT, big data analytics, AI, and blockchain are key enablers, 
their use in sustainability management remains limited and mostly in pilot phases across 
various industries [12]. Furthermore, while digitalization and AI play an increasing role 
in energy management, their potential for enhancing climate resilience in industrial 
sectors remains underexplored. 

While AI adoption in industrial sectors has been extensively explored, there is a 
critical gap in understanding how these technologies can contribute to climate resilience 
and energy adaptation in EIIs. Examining AI’s role within climate and energy policies 
and sector challenges will show how digital transformation enables sustainable industrial 
adaptation and decarbonization. 

To address these gaps, this study formulates the following research question: How 
do digital technologies and AI support climate resilience and energy adaptation in 
Energy-Intensive Industries? 

This study specifically aims to offer insights into the national climate and energy 
policy frameworks, identify the industrial sectors most impacted by related uncertainties, 
and explore the perceived barriers to decarbonization and adaptation. Additionally, it 
examines the role, preparedness, applications, and challenges of AI and digitalization 
within industrial settings. By examining policy influence, technology readiness, and
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stakeholder confidence, it offers a focused view of how AI supports sustainability goals 
under the pressures of climate change and energy transition. 

This paper is structured as follows: Sect. 2 reviews the relevant literature. Section 3 
outlines the applied method. The results are presented in Sect. 4,  followed  by  a  discussi  on
in Sect. 5, and the conclusion in Sect. 6. 

2 Literature Review 

2.1 Digital Technologies and AI in Industry 

Digital technologies and AI are main components of Industry 4.0 and Industry 5.0 
that enhance efficiency, sustainability, and innovation, driving transformation across 
industries [13–15] (shown in Table 1). 

Key digital technologies such IoT connect physical objects equipped with sensors 
and actuators, enabling real-time data collection and communication. Big Data Analyt-
ics supports data-driven decision-making by analyzing vast datasets to uncover patterns, 
correlations, and trends. Cloud computing facilitates the rapid provisioning and man-
agement of computing resources, enabling scalability and flexibility in data storage and 
processing [16]. 

Related technologies and AI comprise of intelligent systems, including Machine 
Learning (ML) and Deep Learning (DL), which allow machines to learn from experience 
and analyze complex data using neural networks [17]. Computer vision enables AI-
driven systems to analyze and interpret visual data, commonly applied in quality control 
and visual inspection [14, 18]. Generative AI, a subset of AI, is used for generating 
data, such as images, text, and predictive analytics models, useful for product design 
and content generation [15]. 

Other digital technologies, Additive Manufacturing (AM), build objects layer by 
layer from digital designs [19], and Robotics and Autonomous Robots, which perform 
tasks independently in industrial settings [17]. Digital Twin (DT) technology creates 
virtual models of physical objects or processes, continuously updated with real-time data 
for predictive insights [15]. Virtual Reality (VR) and Augmented Reality (AR) enhance 
user experiences by either simulating digital environments or overlaying virtual elements 
onto the real world [20]. 

Table 1. Digital Technologies and AI. 

Category Technology References 

Key Digital Technologies Internet of Things (IoT) [12, 13, 16, 17, 20–22] 

Big Data Analytics [12, 13, 16, 17, 20, 22] 

AI and Related Technologies Artificial Intelligence (AI) [12–14, 17, 20–22]  [23] 

Machine Learning (ML) [13, 14] 

Deep Learning (DL) [13, 14] 

Computer Vision [14, 18]

(continued)
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Table 1. (continued)

Category Technology References

Generative AI [15] 

Other Digital Technologies Additive Manufacturing (AM) [13, 19, 20] 

Robotics & Autonomous Robots [13, 17, 22, 23] 

Digital Twin (DT) [14, 15, 24] 

Virtual Reality (VR) & Augmented 
Reality (AR) 

[16, 17, 20] 

Blockchain Technology [12, 20, 22, 25] 

2.2 Digital Technologies and AI Role in Climate Resilience and Energy 
Adaptation 

For more sustainable and efficient practices, digital technologies and AI can be utilized in 
industries. In process optimization, AI techniques like those in Cold Spray (CS) for Addi-
tive Manufacturing (AM) enhance material deposition, surface quality, and efficiency by 
analyzing data to predict and optimize process variables [13]. In energy management, 
AI and data science help address environmental concerns and rising costs by identi-
fying energy waste and optimizing consumption. Digital technologies and AI can also 
enhance electricity production, distribution, and forecasting from renewable sources [14, 
25]. In addition, AI technologies are essential enablers of the green transition, improv-
ing processes, reducing emissions, and driving innovation [17]. Regarding supply chain 
sustainability, AI helps reduce waste, emissions, and material usage while optimizing 
supply chain flows and inventory, even in evolving conditions, enabling more accurate 
delivery forecasting [14]. Moreover, Cognitive Digital Twins (CDTs) leverage AI and 
ML to create real-time representations of physical manufacturing systems. For instance, 
a study proposes integrating generative AI (GenAI) like ChatGPT into CDTs to improve 
sustainability within manufacturing [26]. Furthermore, generative AI contributes to sus-
tainable manufacturing within Industry 5.0 by optimizing production processes, reducing 
waste, and boosting resource efficiency, which improves the environmental impact of 
manufacturing operations [15]. 

2.3 Challenges in Integrating AI into Energy-Intensive Industries 

Integrating AI into industries presents several challenges (shown in Table 2). For exam-
ple, data requirements and compatibility challenges arise, as obtaining high-quality 
datasets for AI training can be both difficult and costly in certain manufacturing sectors 
[15]. In addition, AI algorithms may not seamlessly integrate with legacy systems that 
may require significant upgrades [15]. 

Implementation costs also pose barriers, with large investments needed for digital 
technologies, which may not be feasible for many small and medium businesses [14, 17, 
26]. Another significant challenge is the lack of practical and theoretical knowledge on
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adoption and implementation of digital technologies, including AI, for energy efficiency 
[17]. 

Moreover, AI frameworks face scalability and adaptability issues since they are often 
untested in real-world settings, and their outputs can be hard to interpret, reducing user 
understanding and trust [14, 15]. Barriers, such as resistance to change and a lack of 
expertise in AI implementation, may impede progress, while shifting to a data-driven 
decision-making approach can encounter cultural resistance [15]. 

Economic viability and Return on Investment (ROI) remain concerns, for instance, 
in a study that shows that manufacturers cite insufficient ROI as a major barrier to 
large-scale digital manufacturing [21]. Additionally, demonstrating the energy savings 
from adopting digital technologies can be challenging, making such investments seem 
unprofitable [17]. 

Table 2. Challenges in Integrating AI into Industries. 

Challenges and Description Reference 

Challenge in obtaining high-quality data; compatibility issues with legacy 
systems 

[15] 

High costs and lack of knowledge hinder adoption [14, 17, 26] 

AI frameworks may lack real-world applicability, and AI output interpretation is 
challenging 

[14, 15] 

Resistance to change and lack of expertise hinder progress [15] 

Insufficient ROI and difficulty demonstrating benefits [17, 21] 

3 Methodology 

To address the research question, this study employed a structured survey approach 
aligned with the objectives of the International Energy Agency’s Industrial Energy-
Related Technologies and Systems (IEA IETS) Task 22. Task 22 focuses on enhancing 
climate resilience and energy adaptation in energy-intensive industries (EIIs) through 
digitalization and AI. The survey was collaboratively developed and disseminated among 
member countries participating in Task 22, with the exception of Denmark and Sweden, 
due to national coordination agreements. 

The online survey instrument was composed of four main parts: (1) Demographic 
Information, (2) Participation in Task 22, (3) Climate and Energy Policies, and (4) 
Application of Digitalization and AI (sown in Table 3). These sections were designed to 
elicit comprehensive, country-specific insights regarding the policy landscape, industrial 
challenges, digital and AI readiness, and perceived value of international collaboration. 
Specific topics included barriers to sustainability, existing climate and energy policies, 
readiness levels for AI deployment, and the Technology Readiness Level (TRL) of imple-
mented solutions. A Likert scale and multiple-selection format were used to capture both 
quantitative and qualitative responses. The online survey was designed to be completed
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within 5–10 min via Microsoft Forms. It provides an introduction on the purpose of the 
survey. It also informed respondents that responses would be treated confidentially, with 
any individual data anonymized. Participation was voluntary, and respondents were free 
to withdraw at any time. The survey introduction included the purpose of the survey and 
a link where participants could read more about Task 22. 

A total of 29 respondents completed the survey. Most were from research insti-
tutions or universities, holding senior positions such as Associate Professor, academic 
researcher, or research engineer. Industry professionals, including operations technology 
managers and consultants, also contributed. Geographically, the survey drew primarily 
from European countries (e.g., Italy, Germany, Portugal), with additional responses from 
Canada, reflecting an international and interdisciplinary engagement. 

The survey also asked respondents to self-assess their expertise relevant to Task 22. 
For instance, twenty-five (25) respondents confirmed direct expertise in areas such as 
energy management, AI, smart grids, carbon reduction, and digitalization, reinforcing 
the credibility and relevance of the responses. Respondents also indicated their potential 
contributions to Task 22, including participation in webinars, sharing best practices, and 
providing case studies, indicating high levels of interest in collaborative efforts. 

Table 3. Survey Design and Implementation Overview. 

Aspect Details 

Number of Respondents 29 IEA-IETS members 

Survey Duration 5–10 min 

Survey Platform Microsoft Forms 

Survey Structure Four parts: (1) Demographic Information, (2) Participation in Task 
22, (3) Climate & Energy Policies, (4) Application of 
Digitalization and AI 

Question Types Likert scale and multiple-selection formats 

Confidentiality & Privacy Responses treated confidentially; individual data anonymized 

Participation Voluntary, with option to withdraw at any time 

4 Results 

This section presents the findings from the IEA IETS Task 22 survey, which aimed 
to explore how digital technologies and AI are perceived and applied in enhancing 
climate resilience and energy adaptation within energy-intensive industries. The results 
are organized into two main areas: 

(1) insights into national climate and energy policy landscapes, industrial sectors most 
affected by related uncertainties, and perceived barriers to decarbonization and 
adaptation; and 

(2) the role, readiness, applications, and challenges associated with AI and digitalization 
in industrial contexts.
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Together, these findings provide a comprehensive understanding of both the systemic 
challenges and the technological opportunities that influence the uptake of digital solu-
tions in the green transition. Each sub-section highlights the perspectives of stakeholders 
from academia, research institutions, and industry across several IEA member countries. 

4.1 Climate and Energy Policies 

This section outlines industrial sectors most affected by related uncertainties; imple-
mented regulations; barriers to energy efficiency, sector coupling, and decarbonization; 
and industry perceptions of climate policy impacts on operations. 

Industrial Sectors. Respondents were asked about their perceptions of which indus-
trial sectors are most affected by climate- and energy-related uncertainties. They were 
given six options and could select more than one. The results show that heavy industry 
and energy production & utilities are seen as the most affected by climate and energy 
uncertainties, likely due to high energy use, emissions, and regulatory pressures. Other 
impacted sectors include transportation & logistics, manufacturing, food & beverage pro-
duction, and building industry indicating that climate challenges extend across industries. 
These indicate the need to prioritize these industries to reduce climate and energy-related 
uncertainties (see in Table 4). 

Table 4. Industrial Sectors Most Impacted by Climate 
and Energy Uncertainties. 

Industrial Sectors Results 

Manufacturing 12 

Heavy Industry (e.g., steel, cement) 26 

Transportation & Logistics 15 

Food & Beverage Production 7 

Energy Production & Utilities 21 

Other (e.g., building industry) 1 

Implemented Policies and Regulations. Respondents mentioned the policies and regu-
lations implemented addressing energy and climate issues in industries in their countries. 
Majority respondents highlight the importance of renewable energy adoption, reflecting 
global efforts toward cleaner energy. The strong recognition of energy efficiency man-
dates, decarbonization programs, and carbon pricing shows active regulatory support for 
sustainability. However, very few mentions other policies and regulations (e.g., clean 
fuel regulations). Overall, results indicate opportunities for policymakers to strengthen 
measures in these underrepresented areas. 

Barriers to Sustainability Efforts. Respondents were also asked about their percep-
tions of the barriers to sustainability efforts, and they could select more than one option 
from a list of barriers. High costs of implementation are the primary barrier to industrial
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sustainability efforts, indicating the need for more cost-effective solutions or increased 
funding support. Regulatory uncertainty highlights the importance of clear, stable poli-
cies to encourage long-term investments in energy efficiency and decarbonization. Resis-
tance to change within industries suggests a need for stronger awareness campaigns, 
incentives, or policy-driven mandates. Additionally, limited expertise and technological 
limitations indicate that industries may benefit from targeted training programs. The lack 
of financial incentives further underscores the need for subsidies and funding programs 
(shown in Table 5). 

Table 5. Barriers Faced by Industries in Implementing 
Energy Efficiency, Sector Coupling, or Decarbonization 
Measures. 

Barriers Results 

High costs of implementation 26 

Lack of financial incentives or subsidies 13 

Regulatory uncertainty 19 

Technological limitations 10 

Limited expertise or knowledge 17 

Resistance to change within industries 19 

Impact of Climate-Related Policies on Their Operations. The results show that 
climate-related policies have varying effects on industries. Eleven (11) respondents men-
tioned both benefits and challenges, indicating that while these policies can foster inno-
vation and efficiency, they may also cause operational difficulties. Seven (7) respondents 
view the policies positively, seeing them as opportunities for growth and sustainability. 
Four (4) respondents feel the impact is minimal, suggesting some businesses have already 
adapted, while four (4) perceive negative effects, likely due to financial or regulatory 
pressures, and three (3) are uncertain, reflecting a lack of clarity on policy implications. 
Overall, these findings suggest that while climate policies can drive progress, they also 
present challenges that businesses need to manage. 

4.2 Application of Digitalization and AI 

Respondents highlighted AI’s role in boosting energy efficiency, enabling sector cou-
pling, and reducing emissions. They discussed AI applications for climate resilience, its 
readiness level, adoption challenges in energy-intensive sectors, and their confidence in 
AI’s potential for sustainability and digitalization. 

Role of AI. The findings show that AI is widely seen as essential for improving energy 
efficiency, sector coupling, and emissions reduction, with thirteen respondents recogniz-
ing it as a key enabler in achieving sustainability goals (see in Table 6). Another thirteen 
view AI’s impact as moderate, suggesting it should complement other technologies.



Examining the Role of Digital Technologies 223

However, a small group either downplays or remains uncertain about AI’s effectiveness, 
highlighting the need for more evidence and awareness. These insights suggest indus-
tries should focus on AI integration, invest in related technologies, and create supportive 
policies to maximize their potential in sustainability, while education and case studies 
can help reduce skepticism and encourage broader adoption. 

Table 6. Role of AI in Achieving Energy Efficiency, Sector Coupling, and Reducing Emissions 
in your Country’s Industries. 

Role of AI Results 

Key enabler (central to achieving energy and sustainability goals) 13 

Moderate role (contributes alongside other factors) 13 

Minor role (limited impact) 1 

Unsure/Don’t know 2 

AI Applications in Industry. Respondents were asked to select all AI applications 
they are aware of being used or explored in their country’s industries to enhance cli-
mate resilience, support energy adaptation, or manage uncertainties (see in Table 7). A 
total of 23 respondents identified predictive maintenance, where ML is used for equip-
ment health monitoring. Similarly, twenty-three respondents mentioned forecasting and 
demand prediction, which supports anticipating market trends and energy needs. Twenty 
(20) respondents cited process optimization and control, while another twenty high-
lighted the use of DT or simulation models for industrial processes. Additionally, nine-
teen respondents recognized advanced data analytics for real-time energy monitoring 
and management, and another eleven noted AI-driven supply chain management. 

Table 7. AI Applications for Climate Resilience and 
Energy Adaptation in Industry. 

AI Applications Results 

Process optimization and control 20 

Predictive maintenance 23 

Forecasting and demand prediction 23 

Digital twins or simulation models 20 

AI-driven supply chain management 11 

Advanced data analytics 19 

Technology Readiness and Barriers to AI Adoption. The results show that most 
respondents (10 out of 29) are at Technology Readiness Level (TRL) 6–7, indicating that 
AI solutions are currently in the pilot phase (shown in Table 8). It means that AI is tested 
and demonstrated in operational settings but not yet fully deployed at scale. A smaller 
number (4 respondents) are at TRL 4–5, where AI is in prototype development, while only
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2 respondents report being at TRL 8–9, reflecting full deployment and integration into 
regular operations. Notably, 11 respondents indicated “Not sure/Don’t know” regarding 
their TRL, and one respondent reported no current AI usage. Across all TRL levels, the 
most frequently cited barrier to AI adoption is a lack of data availability, signaling a 
fundamental challenge in data infrastructure readiness. At earlier TRLs (1–3 and 4–5), 
respondents more often cited high costs of AI systems, limited regulatory support, and 
a lack of skilled workforce as primary constraints. As organizations progress to higher 
TRLs (6–7 and 8–9), the focus shifts toward complexity in integrating AI with existing 
systems and resistance to technological change—indicating that operational and cultural 
factors grow more prominent during scale-up. Those unsure of their TRL level tended to 
report a wide range of barriers, including data privacy concerns, limited understanding, 
and confusion about the relevance or applicability of AI in their context. This suggests 
a need for broader industry awareness and education about AI readiness and adoption 
pathways. Overall, the results indicate that while many organizations are moving toward 
operational implementation of AI, significant challenges remain, particularly around 
data access, workforce readiness, and system integration. These barriers are dynamic 
and tend to shift depending on the maturity of AI deployment within the organization. 

Table 8. Technology Readiness and Barriers to AI Adoption. 

TRL Level # Responses Common Barriers to AI Adoption 

TRL 1–3: Early-stage research 1 Complexity of integrating with existing 
systems 

RL 4–5: Prototype development 4 High costs of AI systems 
Lack of data availability 
Lack of a skilled workforce 
Resistance to technological change 
Limited regulatory support 

TRL 6–7: Pilot implementation 10 Lack of data availability 
Complexity of integration 
Lack of a skilled workforce 
High costs 
Regulatory issues 
Resistance to change 

TRL 8–9: Fully deployed 2 Lack of data availability 
Lack of a skilled workforce 
Resistance to technological change 

Not sure / Don’t know 11 Lack of data availability 
Lack of a skilled workforce 
Complexity of integration 
Data privacy concerns 
Confusion or lack of understanding 

We do not currently use AI 1 Respondent reported “It does not make 
any sense.”
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Confidence in AI’s Role in Achieving Sustainability Goals. The results indicate 
that while many respondents see AI as having potential in supporting sustainability 
goals, overall confidence in its effectiveness remains limited. Seven respondents express 
high confidence and eleven show moderate confidence, indicating cautious optimism, 
while two lack confidence and nine remain uncertain, reflecting persistent skepticism. 
This uncertainty may come from issues like unclear regulations, data reliability, and 
challenges in integrating AI into existing systems. To build trust and encourage adop-
tion, businesses and policymakers need to showcase successful real-world examples, 
strengthen regulatory frameworks, and improve data quality and integration processes 
(shown in Table 9). 

Table 9. Confidence in AI’s Role in Achieving Sustain-
ability Goals. 

Level of confidence Results 

Very confident 7 

Somewhat confident 11 

Not confident 2 

Unsure/Don’t know 9 

Readiness to Implement AI or Digitalization. Regarding readiness to adopt AI or 
digitalization, 16 out of 29 respondents consider their industry somewhat ready, reflecting 
a moderate level of infrastructure and expertise. However, 6 respondents believe their 
industry is not ready, pointing to major gaps in resources and technical skills, while 
another 6 are unsure, revealing uncertainty about their current capabilities. Only one 
respondent feels their industry is fully prepared, indicating that complete readiness is 
rare. Overall, significant challenges like lack of infrastructure and expertise remain for 
broader adoption (shown in Table 10). 

Table 10. Readiness to Implement AI or Digitalization. 

Readiness level 

Very ready (strong technical infrastructure and expertise) 1 

Somewhat ready (moderate infrastructure and knowledge) 16 

Not ready (lack of infrastructure or expertise) 6 

Unsure/Don’t know 6



226 J. D. Billanes et al.

5 Discussion 

This study investigated how stakeholders in energy-intensive industries perceive and 
engage with climate resilience and energy adaptation, particularly through digital tech-
nologies and AI. The findings are organized into two interrelated domains: national cli-
mate and energy policy landscapes and the application of AI and digitalization in industry. 
Together, these reveal a complex but consistent picture of emerging opportunities and 
persistent barriers to sustainable transformation. 

Heavy industry, energy production, and transportation sectors are widely viewed as 
the most vulnerable to climate and energy-related uncertainties, consistent with litera-
ture identifying these sectors as major CO2 emitters reliant on fossil fuel infrastructure 
[1]. Correspondingly, most surveyed countries have implemented regulatory mecha-
nisms such as renewable energy incentives, decarbonization programs, and carbon pric-
ing. While these approaches increase policy ambition, significant implementation gaps 
remain due to high costs, limited financial incentives, regulatory uncertainty, and a lack 
of expertise. These obstacles reflect structural and economic barriers previously noted 
to delay industrial decarbonization [17]. 

AI and digitalization are broadly recognized as crucial yet underutilized tools for 
advancing sustainability goals. Key AI applications include predictive maintenance, 
forecasting, process optimization, DT, and real-time analytics, aligning with prior find-
ings on their potential to optimize energy use and enhance operational flexibility [10]. 
However, most AI initiatives remain at the pilot or prototype stage (TRL 4–7), confirm-
ing previous literature that describes AI deployment as largely experimental in industrial 
contexts [12]. Furthermore, many respondents rated their industry as only “somewhat 
ready” or “not ready,” citing integration complexity, skill shortages, and data limitations, 
barriers consistent with existing findings on digital transformation within manufacturing 
[14]. 

Importantly, there is a strong correlation between the two result domains. Industries 
surveyed with higher regulatory uncertainty or limited financial incentives also tended 
to report lower levels of AI readiness and adoption. This suggests that enabling policies 
are a critical enabler—not just for emissions reduction, but also for digital innovation. 
Conversely, industries that viewed climate policies positively were more confident in AI’s 
potential and more advanced in its application. These patterns reinforce the argument 
that supportive regulatory environments are crucial for unlocking the digital capabilities 
needed for sustainable industrial transformation [21]. 

A notable gap exists in AI’s direct application to climate resilience. While tools like 
predictive maintenance and demand forecasting support adaptation indirectly, explicit AI 
uses targeting resilience such as extreme weather mitigation or supply chain disruption 
response remain scarce. This aligns with literature observing that digital technologies 
often prioritize energy efficiency over resilience [11]. 

To illustrate, literature reveals how AI-driven predictive modeling can anticipate 
extreme weather impacts on production or supply chains [14], while CDTs can simulate 
industrial system responses under stress, enabling proactive adaptation [26]. AI-powered 
supply chain analytics enhance robustness against climate disruptions [14, 17], and 
reinforcement learning can optimize resource allocation during emergencies [6]. These 
emerging applications demonstrate AI’s potential to expand beyond efficiency toward
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enhancing operational resilience amid growing climate risks. Future research and prac-
tice should broaden AI’s focus to explicitly support climate adaptation, integrating AI 
into climate risk modeling and adaptive planning systems [26]. 

In summary, both literature and empirical findings support the view that AI and 
digital technologies are pivotal to the green transition in energy-intensive industries. 
However, achieving their full potential requires addressing persistent gaps in infrastruc-
ture, skills, regulatory clarity, and investment viability. The survey’s cross-national scope 
also highlights that while technological tools are increasingly available, their success 
is context-dependent shaped by policy environments, sectoral dynamics, and organiza-
tional readiness. These insights provide a foundation for more targeted strategies that 
align digital innovation with industrial decarbonization and climate resilience goals. 

6 Conclusion 

This study examined the role of digital technologies and AI in enhancing climate 
resilience and energy adaptation within energy-intensive industries (EIIs) via online 
survey responses. By combining insights from policy landscapes and industrial barriers 
with current applications and perceptions of AI, the study provides a holistic perspective 
on the readiness and challenges of sustainable digital transformation. 

Findings confirm that while AI is recognized as a powerful enabler of energy 
efficiency, emissions reduction, and industrial optimization, its real-world application 
remains constrained by high implementation costs, system integration complexity, and 
gaps in workforce skills. Furthermore, the study highlights that climate resilience, though 
increasingly relevant amid growing climate risks, remains a secondary focus in AI 
deployment, indicating a need to broaden the strategic scope of digital initiatives. 

The results also emphasize the crucial interplay between national policy environ-
ments and technological adoption. Supportive regulations, stable incentives, and tar-
geted investments significantly shape industry readiness and confidence in exploring 
and scaling up AI solutions, as also shown by the strong correlation between regulatory 
uncertainty and lower AI adoption. As the study shows, digital transformation and cli-
mate policy cannot be treated in isolation; rather, they must be coordinated to mutually 
reinforce industrial sustainability goals. 

This study has several limitations, including sample size, respondent affiliation, and 
the geographic scope of the data. For example, the survey was distributed across 29 IEA 
IETS members, primarily in Europe and Canada, excluding Denmark and Sweden. While 
the survey covered a range of countries, regional differences were not analyzed, as geog-
raphy was not the focus of the study. Nevertheless, the concentration in specific regions 
may limit the generalizability of the findings to areas with different industrial structures 
or policy environments. In addition, the sample was skewed toward respondents from 
academic and research institutions, which may underrepresent the on-the-ground imple-
mentation challenges faced by industry practitioners, where operational, financial, and 
technological barriers can differ. 

Future research should explore longitudinal developments in AI adoption across 
industries and countries, examine successful implementation cases in greater detail, 
and investigate AI’s untapped potential for enhancing climate resilience. Comparative
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sectoral studies and policy analyses will also be valuable for identifying effective strate-
gies that align digital innovation with both mitigation and adaptation priorities. More-
over, it is important that future studies include a more diverse and representative sam-
ple particularly from industry sectors to better capture real-world AI applications and 
challenges. 

Survey Link. https://forms.office.com/Pages/DesignPageV2.aspx?origin=NeoPortal 
Page&subpage=design&id=fcKXmj64lEazU1S9vxirW5jzUCZHeNZDgawyz0HqBD 
JUMkxBRTBPTTMxS1JVWkg1RzRBMFBGUlBUOC4u. 
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Abstract. Plastic pyrolysis is a promising technology for converting plastic waste 
into valuable products such as bio-gas, bio-oil, and bio-char. This paper presents 
a computational model that simulates plastic pyrolysis at various heating rates, 
emphasizing optimizing energy efficiency. Using a MATLAB-based computa-
tional approach, we model the thermal decomposition of plastics and analyze the 
impact of different heating rates (1 °C/s, 10 °C/s, 20 °C/s, and 50 °C/s) on energy 
consumption and the yield of pyrolysis products. This study demonstrates that the 
heating rate plays a significant role in yield distribution and the overall energy 
efficiency of the pyrolysis process. The findings aim to support kinetic modeling 
practices and energy efficiency assessments in thermochemical waste-to-energy 
systems, particularly in contexts where energy optimization and sustainability are 
prioritized. 

Keywords: Plastic pyrolysis · Energy Efficiency · MATLAB Simulation 

1 Introduction 

The global proliferation of plastic materials over recent decades has brought significant 
convenience and economic value, but it has also introduced one of the most pressing 
environmental challenges of our time [1]. Plastics are predominantly derived from petro-
chemical sources and exhibit exceptional durability, which makes them attractive for 
industrial and consumer applications. However, this same durability results in long-term 
environmental persistence, with most conventional plastics remaining in the environment 
for hundreds of years. In 2022, global plastic production exceeded 400 million tonnes, 
yet recycling rates remain below 10% in most regions due to economic, technological, 
and logistical barriers [2]. 

To address the growing plastic waste crisis, thermochemical conversion technologies 
have attracted increasing attention [3]. Among them, pyrolysis—the thermal decom-
position of polymers in the absence of oxygen offers a particularly promising route. 
Unlike incineration, which primarily recovers energy but may release pollutants, pyroly-
sis enables the recovery of value-added products such as pyrolytic oil, non-condensable 
gases, and solid char [4, 5]. These products can serve as alternative fuels, chemical 
feedstocks, or precursors for material synthesis [6].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
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While pyrolysis presents a viable pathway for diverting plastic waste from landfills, 
optimizing the process for maximum energy efficiency remains a critical challenge, par-
ticularly at the industrial scale [7]. The process can be tuned to favor specific product 
distributions by adjusting key parameters such as temperature profile, residence time, 
and feedstock composition. Optimal parameter settings enhance pyrolysis efficiency 
and maximize product yields while supporting environmental sustainability [8]. Under-
standing reactor design is also crucial for tailoring pyrolysis processes to achieve targeted 
yields and desired product compositions. 

Computational models play a vital role in analyzing and optimizing these param-
eters, enabling the development of more efficient and scalable systems. Such models 
can process large datasets, predict outcomes, and optimize parameters in real time. This 
approach improves the efficiency and yield of the pyrolysis process, minimizes envi-
ronmental impact, and supports sustainable plastic waste management practices while 
advancing the circular economy model [9]. 

Recent advances in sustainable manufacturing and decarbonization have elevated 
energy efficiency to a central design objective in industrial processes. Pyrolysis, like 
many thermochemical operations, consumes substantial energy particularly during the 
heating phase. As a result, there is growing interest in optimizing heating rates to balance 
product yield and energy consumption. Faster heating rates may reduce processing time 
but could shift reaction thresholds or affect product composition; conversely, slower 
rates may improve conversion but at higher energy costs. 

This study investigates plastic pyrolysis under different heating rates using a compu-
tational modeling approach based on mass and energy balance principles. Specifically, 
we analyze the effects of heating rates (1 °C/s, 10 °C/s, 20 °C/s, and 50 °C/s) on product 
yields (gas, tar, char) and estimate the energy efficiency of the process at each condition. 
The objective is to provide insight into the trade-offs between product yield, energy 
input, and reaction time, with the goal of informing design and control strategies for 
more energy-efficient pyrolysis systems. 

2 Methodology 

The yields of gas, tar, and char were calculated based on experimental data at three 
temperatures (300 °C, 400 °C, and 450 °C). These data were sourced from Monteiro 
Nunes et al. [10], who reported mass yield percentages of pyrolysis products under 
controlled non-isothermal conditions using Poly(methyl methacrylate), PMMA, as the 
plastic feedstock. PMMA was selected due to its well-defined decomposition behavior 
and relevance in industrial and post-consumer plastic waste streams. 

The selection of heating rates (1, 10, 20, and 50 °C/s) was informed by litera-
ture precedent and practical relevance. Lower rates (1–10 °C/s) are representative of 
laboratory-scale pyrolyzers and kinetic studies, while higher rates (20–50 °C/s) reflect 
rapid thermal processing scenarios in industrial reactors. The chosen steps span a broad 
but practical range, providing sufficient resolution to identify meaningful trends in energy 
demand and product distribution without overcomplicating the analysis. These heating 
rates also reflect real-world limitations in ramp control and thermal flux, which are 
constrained by equipment capabilities and feedstock properties.
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To evaluate how heating rate influences conversion dynamics in plastic pyrolysis, 
a differential equation model was used to simulate the fractional conversion, α,  as  a  
function of time and temperature. The reaction mechanism was previously developed 
by the authors [11]. The model is based on the following equations: 

dα 
dt 

= A  exp  − E

RT (t) 
f (α) (1) 

T(t) = T0 + βt (2)  

Where α is the conversion fraction (dimensionless), t is time (s), A is the pre-
exponential factor (s−1), E is the activation energy (J/mol), R is the universal gas constant 
(8.314 J/mol·K), T(t) is the temperature as a function of time (K), and f(α) is the reac-
tion model, which describes how the conversion evolves with time. β is the heating rate 
(°C/s), and T0 is the starting temperature (K).

Equation (2) is substituted into Eq. (1) to express the reaction rate entirely in terms 
of time and heating rate. This formulation enables simulation of pyrolysis kinetics under 
different thermal conditions, forming the basis of the results presented in Sect. 3. Input 
parameters were taken from validated kinetic models reported in [11]. 

The system of ordinary differential equations was solved using MATLAB’s ode45 
solver, chosen for its efficiency in handling non-stiff ODEs, which matches the expected 
behavior of the conversion function in this context. 

The model incorporates fundamental mass and energy balances to assess energy 
consumption and product yield. It calculates the energy required to heat the plastic to 
its decomposition temperature and estimates energy efficiency by comparing the useful 
energy output (from tar and char) to the total energy input. To maintain computational 
simplicity, the model assumes homogeneous heating (i.e., uniform temperature through-
out the feedstock) and neglects heat losses and reactor-specific design effects. While 
these assumptions support a generalized analysis of heating rate impacts, they may limit 
the model’s accuracy in predicting outcomes in more complex, real-world systems. 

3 Results and Discussion 

3.1 Conversion Behavior Under Varying Heating Rates 

Figure 1 presents the simulated conversion fraction (α) versus temperature for gas, tar, 
and char across heating rates of 1, 5, 10, and 20 °C/s. The simulation results reveal a 
clear trend: higher heating rates (20 °C/s and 50 °C/s) lead to increased gas yield and 
reduced char formation due to the rapid vaporization of volatile components. 

In contrast, slower heating rates (1 °C/s and 10 °C/s) favor higher char and tar yields, 
as the decomposition occurs more gradually, allowing time for secondary reactions that 
produce solid and liquid products. This suggests that at higher heating rates, the process 
is more inclined to generate volatile products (gas), whereas slower heating rates retain 
more solid-phase products such as char. 

The grouped bar plot displays a comparison of energy efficiency, time efficiency, 
normalized yields, and energy per unit yield at various heating rates. It visually empha-
sizes the trade-off between higher gas yields and lower energy efficiency at faster heating
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Fig. 1. Effect of Heating Rate on Product Yields at Different Temperatures. Numbers on the bars 
indicate the corresponding heating rates examined. 

rates. Additionally, a summary table is presented as a figure, where each row corresponds 
to a different heating rate (1 °C/s, 10 °C/s, 20 °C/s, and 50 °C/s), and columns represent 
the respective efficiency and yield metrics (Fig. 2). 

3.2 Energy Efficiency and Yield Metrics 

Energy efficiency was evaluated for each heating rate. The results show that slower 
heating rates (1 °C/s and 10 °C/s) offer higher energy efficiency, as the energy required 
for pyrolysis is more effectively utilized in producing tar and char. Faster heating rates 
tend to result in greater energy loss through gas production, which is generally less 
valuable compared to tar and char. Although the total energy input is constant for a given 
temperature range, faster heating rates reduce the overall process time, and therefore may 
improve time efficiency. The highest energy efficiency was observed at a heating rate of 
10 °C/s, which represents a trade-off between energy consumption and product yield. 
This rate appears to be optimal for energy-efficient pyrolysis. 

Energy per unit yield was also calculated for each product. As expected, higher 
heating rates resulted in increased energy consumption per unit of gas produced. In con-
trast, slower heating rates were more energy-efficient for tar and char production. These 
results underscore the importance of balancing product yield and energy efficiency; as 
excessive energy use for gas production may not be desirable in processes focused on 
maximizing material recovery or minimizing energy loss.
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Fig. 2. Comparison of Efficiency Metrics and Product Yields Across Heating Rates. The grouped 
bar chart compares pyrolysis process metrics at different heating rates (1, 10, 20, and 50 °C/s). 
Bars represent: Energy Efficiency and Time Efficiency (unitless ratios), Normalized Tar, Char, and 
Gas Yields (originally % by mass, scaled by 1/100), Energy per Unit Yield (calculated as kJ per % 
yield for tar, char, and gas). Different metrics are scaled or normalized for visual comparability; 
absolute values may differ in physical units. 

Table 1. Comparison of Yield and Energy Metrics Across Heating Rates 

Normalized Yields 
(%) 

Energy per Unit 
Yields (kJ/unit) 

Heating Rate 
(°C/s) 

Energy Efficiency 
(%) 

Time 
Efficiency (s) 

Tar Char Gas Tar Char Gas 

1 84.1 1.5 14.7 65.9 16.5 1.8 2.1 2.5 

10 82.4 0.95 20.5 31.4 46.4 2.1 2.3 3.2 

20 76.5 0.5 20.5 45.3 32.1 2.3 2.5 3.2 

50 69.8 0.2 24.5 46.1 50.1 2.5 2.7 4.0
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3.3 Implications for Energy Optimization 

Different heating rates produce distinct temperature profiles, influencing both the reac-
tion time and the thermal decomposition behavior of plastics [12, 13]. Higher heating 
rates typically reduce total reaction time, which may be beneficial for rapid processing 
but can also limit the breakdown of the plastic feedstock, thereby affecting the yields of 
gas, liquid, and solid products [9]. Empirically, faster heating rates tend to favor gas pro-
duction at the expense of biochar yield. Although shorter processing times may reduce 
energy consumption, they can also result in lower solid and liquid yields, depending on 
the material response and heat transfer limitations. 

Among the tested rates, a heating rate of 10 °C/s appears to strike a favorable bal-
ance across multiple competing objectives: high energy efficiency, reasonable gas yield, 
acceptable reaction time, and increased production of valuable byproducts such as tar 
and char. This selection is based on a heuristic, multi-criteria evaluation rather than a 
formal optimization algorithm. As shown in Table 1, faster rates improve gas output 
but reduce energy efficiency and increase the energy required per unit of product. Con-
versely, slower rates increase reaction time without delivering proportionate improve-
ments in yield. The 10 °C/s condition consistently performs well across these trade-offs, 
suggesting its suitability for industrial-scale pyrolysis. 

The findings suggest that energy-efficient heating rates can directly reduce upstream 
fuel consumption and downstream emissions, particularly when paired with renewable 
electricity sources. These results can support LCA modeling, investment decisions in 
pyrolysis infrastructure, and regulatory frameworks focused on circular economy transi-
tions. Future research may incorporate multi-objective optimization tools, such as Pareto 
analysis or formal decision-making frameworks, to more rigorously determine optimal 
heating conditions. 

4 Conclusion 

This study exemplifies how simplified, physics-informed models can enable system-
level insights with direct implications for energy informatics. The kinetic model and 
conversion simulations were used to guide energy input optimization in plastic pyrolysis 
processes. As heating rate increases, energy is delivered over a shorter period, raising 
instantaneous power demand and potentially reducing system efficiency due to increased 
thermal losses and insufficient residence time. 

However, higher heating rates also compress the overall reaction duration, which 
may enable smaller reactor designs or higher throughput. This trade-off suggests the 
existence of an optimal heating rate range that balances energy efficiency, conversion 
completeness, and reactor design constraints. For optimal performance, a heating rate 
of approximately 10 °C/s achieves near-complete decomposition with moderate energy 
input and minimal thermal overshoot, offering a favorable compromise between product 
yield and energy consumption. 
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Abstract. Industrial manufacturing processes, particularly energy-intensive 
batch operations, face significant challenges due to volatile electricity prices and 
stringent sustainability requirements. This paper proposes a data-driven batch 
scheduling optimization framework designed to minimize electricity costs by 
aligning high-resolution energy consumption profiles with dynamic electricity 
pricing. The methodology integrates synthetic data generation, precise cost mod-
eling at 10 s resolution, and a rigorous combinatorial optimization procedure that 
ensures optimal scheduling solutions within discrete intervals. Validation through 
a real-world case study from a Danish foundry demonstrates substantial cost sav-
ings, achieving an overall weekly electricity expense reduction of approximately 
16,783 DKK across multiple batches. The proposed approach distinctly advances 
existing literature by guaranteeing global optimality, explicitly incorporating real 
operational constraints, and employing realistic industrial data for validation. This 
research provides practical, robust decision-support capabilities, enabling indus-
tries to effectively navigate market fluctuations, reduce operational costs, and 
enhance environmental sustainability without additional capital investment. 

Keywords: Energy cost optimization · Dynamic electricity pricing · Industrial 
batch scheduling · Data-driven optimization · Sustainability 

1 Introduction 

Industrial manufacturing is one of the largest electricity consumers worldwide, making 
energy efficiency a critical lever for reducing both operational costs and carbon emissions 
[1, 2]. In energy-intensive processes such as metal melting and chemical batch produc-
tion, electricity consumption represents not only a substantial component of operating 
costs but also a major contributor to carbon emissions [2, 3]. Aligning production sched-
ules with dynamic electricity pricing, such as Time-of-Use (TOU) and real-time tariffs, 
offers a promising pathway to reduce both energy costs and emissions [3, 4]. 

However, despite these financial incentives, industries face persistent challenges in 
applying demand-response strategies. Operational constraints, limited decision-support 
tools, and price uncertainty often prevent effective scheduling adaptations [5]. These
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challenges underscore the urgent need for robust, practical, and precise data-driven 
methodologies capable of supporting effective decision-making for batch scheduling 
under dynamic pricing conditions [1]. 

Although prior research has explored scheduling optimization under dynamic pric-
ing, many studies rely on heuristic methods that offer computational efficiency but no 
guarantee of global optimality [1, 6, 7]. Others simplify operational constraints or use 
coarse temporal data, limiting real-world applicability [5, 8, 9]. Moreover, the integra-
tion of real industrial datasets for validation remains sparse, reducing confidence in the 
practical applicability and robustness of proposed models [4, 10, 11]. 

To address these critical shortcomings, this study proposes a globally optimal, data-
driven batch scheduling framework specifically tailored for industrial melting operations 
under dynamic electricity pricing. Unlike prior works that predominantly adopt heuristic-
based optimization without guarantees of global optimality and rely largely on synthetic 
datasets [1, 11], this research explicitly integrates high-resolution, real-world data, real-
istic operational constraints, and precise cost modeling to ensure robust, applicable, and 
verifiable scheduling decisions [4, 5]. 

The main objective is to minimize electricity costs by aligning batch production 
with dynamic market prices. This is achieved through a multi-stage methodology that 
includes synthetic data generation, 10 s interval power monitoring, hourly price inte-
gration, exhaustive combinatorial optimization, and validation using real data from a 
Danish foundry. 

The proposed method explicitly considers practical constraints, including batch non-
overlap and mandatory downtimes. By leveraging high-frequency data and guaranteeing 
globally optimal solutions, it enhances the precision and utility of industrial scheduling 
decisions. This method explicitly considers real-world operational constraints, includ-
ing non-overlapping batch executions and mandatory downtime between consecutive 
batches [4, 5]. 

The novelty of this research lies in three key aspects. First, in contrast to heuristic 
or approximate methods widely used in existing literature [1, 6, 11], this study employs 
a globally optimal combinatorial scheduling framework for batch operations. Second, 
the use of high-resolution consumption data significantly improves the accuracy and 
practical utility of scheduling decisions [5]. Third, the explicit validation of the proposed 
method using real-world plant data, addressing the gap between theory and practice in 
energy-aware scheduling [4, 5, 10]. 

The remainder of the paper is structured as follows. Section 2 presents a detailed and 
comprehensive literature review. Section 3 details the proposed methodology. Section 4 
presents the case study and data sources. Section 5 reports and analyzes the results, while 
Sect. 6 discusses broader implications. Finally, Sect. 7 concludes with key findings and 
future directions. 

2 Literature Review 

Energy cost optimization in industrial batch processes has become increasingly critical 
due to rising electricity prices, carbon emission regulations, and the growing emphasis 
on sustainable manufacturing practices. Manufacturing industries, particularly energy-
intensive sectors such as metal casting and foundries, face significant challenges in
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managing electricity costs while maintaining production efficiency [5]. Dynamic pricing 
schemes like Time-of-Use (TOU) and real-time electricity tariffs offer opportunities for 
reducing operational costs by shifting energy-intensive processes to periods of lower 
electricity prices [2, 4]. 

2.1 Scheduling Optimization Under Dynamic Electricity Pricing 

Significant research has focused on developing mathematical models and optimiza-
tion algorithms to align production schedules with fluctuating electricity prices. Single-
machine and batch process scheduling under variable tariffs have been addressed using 
bi-objective mixed-integer linear programming models, which aim to minimize both 
electricity costs and production makespan [2, 3]. While these models achieve high 
accuracy, their scalability remains limited for larger industrial cases [12]. 

To overcome computational challenges, metaheuristic algorithms have been widely 
adopted. Studies have demonstrated that hybrid evolutionary approaches such as genetic 
algorithms (GA) and particle swarm optimization (PSO) effectively manage complex 
job-shop and flexible manufacturing system scheduling under dynamic electricity pricing 
[1, 6]. For example, [1] proposed a memetic NSGA-II algorithm for the flexible job shop 
scheduling problem, efficiently handling frequent changes in real-time energy tariffs. 
Similarly, [6] developed a hybrid PSO-based method integrating tabu search to improve 
solution diversity and convergence speed in flexible flow shop environments. 

2.2 Advanced Techniques 

Recent advancements also include the integration of machine learning and deep rein-
forcement learning (DRL) to handle scheduling under market uncertainties. [4]  intro-
duced a DRL-based scheduling framework that dynamically adapts production plans 
to minimize energy costs, achieving significant cost savings in complex manufactur-
ing scenarios. These approaches show promise in handling real-world complexities, 
but their high computational demands and reliance on large-scale training data present 
implementation challenges.

An emerging research direction focuses on integrating renewable energy sources 
(RES) and energy storage systems (ESS) into production scheduling models [8, 13]. 
As highlighted in [8], a two-level optimization approach incorporating dynamic energy 
markets, RES, and ESS has been shown to reduce both energy costs and emissions. 
This integrated planning supports sustainable manufacturing practices while optimizing 
operational flexibility and energy procurement decisions. 

2.3 Limitations and Research Gap 

Despite extensive research efforts, several critical gaps remain. Many existing studies 
rely heavily on synthetic datasets, lacking validation using real industrial data, which 
limits practical applicability [4, 5]. Additionally, most optimization frameworks either 
focus solely on cost minimization or production efficiency but rarely achieve a balanced 
trade-off between the two. Furthermore, the temporal granularity of consumption and
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pricing data in many studies is insufficient for capturing short-term price volatility, 
leading to suboptimal scheduling decisions [1, 2, 14]. 

This study addresses these gaps by combining high-resolution industrial data with a 
globally optimal scheduling method tailored for batch processes. Unlike heuristic-driven 
or approximate methods, this paper’s global optimization approach ensures optimality 
and robustness, making it highly applicable and valuable for industrial decision-makers 
aiming to achieve economic, environmental, and operational objectives simultaneously. 

Additionally, the proposed framework explicitly considers practical operational con-
straints, such as non-overlapping batch executions and mandatory buffer periods, ensur-
ing the feasibility of proposed schedules. The integration of both synthetic and real-world 
datasets further reinforces the robustness and applicability of the optimization method, 
offering valuable insights and actionable strategies for industrial decision-makers. 

3 Data-Driven Scheduling Optimization Framework 

This section presents the proposed batch scheduling framework, integrating high-
resolution energy consumption data, dynamic electricity pricing, and combinatorial 
optimization to determine cost-efficient batch start times under real-world constraints. 
Unlike heuristic methods commonly used in prior studies, this approach guarantees 
global optimality and is validated using both synthetic and real industrial data [4, 5]. 

3.1 Overview and Framework Design 

The proposed framework follows a staged architecture, as depicted in Fig. 1.  It  begins  
with synthetic data generation to support method development, followed by high-
resolution cost calculations and visual diagnostics. A combinatorial optimization routine 
then identifies cost-saving batch schedules within production constraints. Finally, the 
framework is validated using real industrial data to ensure robustness against process 
va riability.

Fig. 1. Staged Architecture of the Data-Driven Batch Scheduling Optimization Framework
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3.2 Synthetic Data Generation for Controlled Method Design 

To support the systematic development and evaluation of the scheduling framework, a 
synthetic dataset was created to emulate the key temporal and operational character-
istics of industrial melting processes and real-time electricity market conditions. This 
controlled environment ensures reproducibility and facilitates iterative testing of each 
component without the confounding variability present in operational data. 

A synthetic dataset emulates industrial melting processes and real-time electricity 
market conditions to support testing. Each melting cycle includes four phases: ramp-up, 
steady load, ramp-down, and rest, with a standard 90-min duration. Power consumption 
is recorded at 10 s intervals, enabling precise cost alignment with dynamic pricing. 

The synthetic electricity price data is modeled with a one-hour resolution, consistent 
with the granularity of real-time spot market data. The price series is constructed as 
a repeating four-hour cycle, alternating between −10, 0, 10, and 20 EUR/MWh. This 
design reflects typical volatility patterns observed in liberalized electricity markets and 
captures both negative pricing events and peak demand periods. The pricing data spans a 
three-day period (72 h), setting a firm upper limit for the batch duration. Accordingly, any 
simulated batch must have a total processing time shorter than 72 h, ensuring full batch 
flexibility within the defined price window. The temporal alignment between synthetic 
energy consumption and electricity price signals is illustrated in Fig. 2. 

Fig. 2. Temporal Alignment of Synthetic Energy Consumption Profile with Electricity Price 
Fluctuations Over a Three-Day Horizon 

The complete configuration of the synthetic dataset is summarized in Table 1, which 
outlines the resolution, structure, and periodicity of both the consumption and pricing 
components.
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Table 1. Configuration Parameters for Synthetic Dataset 

Parameter Consumption Profile Electricity Pricing Profile 

Data Resolution 10 s 1  h  

Consumption Pattern Rise: 15 min 
Constant: 60 min 
Fall: 15 min 
Rest: 60 min 

Repeating cycle: 
−10, 0, 10, 20 EUR/MWh 

Duration of Cycle 90 min 4  h  

Total Data Period =72 h 72 h 

3.3 Cost Calculation Procedure 

The optimization evaluation procedure comprises two main components: cost calcula-
tion and visualization. For each melting cycle, the high-resolution consumption data 
is aligned with the hourly electricity price profile by replicating hourly prices at 10 s 
intervals. The total electricity cost C of a batch operating over a time interval [t0, t1 ] is 
computed by integrating the instantaneous product of power consumption and electricity 
price: 

C = 
t1 

t0 
P(t) · π (t) dt (1)

Where P(t) is the power consumption in kW and π (t ) is the electricity price in DKK/kWh 
at time t. This enables accurate cost estimation even in scenarios with fine-grained 
consumption fluctuations. 

To support exploratory analysis and validation, the results are visualized using both 
interactive and static plotting libraries. Plotly is used to enable dynamic exploration of 
cost structures and temporal alignment, while Matplotlib generates high-resolution static 
plots for documentation and reporting. 

3.4 Batch Scheduling Optimization Procedure 

The goal of the optimization procedure is to minimize total electricity cost by optimizing 
the start times of melting batches within a given planning window. Each batch is treated 
as a fixed-duration time block derived from either synthetic or real consumption data. 

A full exhaustive search is performed over all valid start times at one-hour intervals. 
For each candidate’s start time, the batch cost is calculated using the method described 
in Sect. 3.3. The configuration with the lowest cost is identified as the optimal solution. 
When extending the optimization to multiple batches, two critical operational constraints 
are enforced: (i) no overlap between batch executions, and (ii) a minimum one-hour 
buffer between consecutive batches to reflect production setup or cooling time. 

Two distinct optimization strategies are implemented:
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• Independent Batch Optimization: Each batch is optimized in isolation, assuming 
that scheduling of one batch does not constrain others.

• Global Batch Optimization: All batches are scheduled jointly, enforcing non-
overlapping execution and a minimum one-hour buffer between batches. 

This combinatorial optimization approach ensures rigorous and globally optimal 
scheduling solutions within the discretized scheduling space, providing tangible cost 
reductions in practice. 

3.5 Validation with Real Industrial Data 

To assess the real-world applicability and robustness of the proposed scheduling opti-
mization framework, the full scheduling method was validated using actual manufactur-
ing data from an industrial melting facility. Unlike the synthetic dataset, the real oper-
ational data does not exhibit uniform cycles or fixed patterns. Therefore, a data-driven 
approach was employed to preprocess and structure the raw inputs. 

Power consumption data was collected at a 10 s resolution over a continuous six-day 
production window. In the absence of annotated batch identifiers, a heuristic segmen-
tation rule was used to extract operational batches: a new batch was assumed to begin 
when the time gap between two successive power consumption events exceeded one 
hour. This approach allowed consistent batch identification across the unstructured data 
stream. 

Once batches were identified, each was subjected to the full optimization pipeline. 
For each batch, a feasible shifting window was established beginning at the next full 
hour after its actual start time and extending until 16:00 on Friday, April 19—the latest 
operationally viable time. Both single-batch and multi-batch optimization routines were 
executed, with the latter enforcing non-overlapping constraints and a one-hour buffer 
between batch start times. Validation confirmed the framework’s effectiveness under 
real operational conditions, demonstrating its robustness and practical applicability. 

4 Case Study: Energy Cost Optimization in a Danish Foundry 

To demonstrate the application of the optimization framework in a real industrial setting, 
a case study was conducted using data from the Vald. Birn A/S foundry, located in the 
Jutland region of Denmark, which operates electric melting furnaces. 

The dataset includes high-frequency (10 s resolution) power consumption data and 
hourly electricity spot prices for the DK1 market zone. DK1 encompasses Western 
Denmark, including Jutland and Funen, and is characterized by substantial intraday 
price variation. The spot price data was retrieved from the ENERGIDATA platform 
maintained by Energinet [15]. 

The selected case study period spans from 00:00 on Sunday, April 14, to 00:00 on 
Saturday, April 20, 2024. While data is available for the entire week, only the six working 
days (Sunday to Friday) were analyzed, as no furnace activity occurred on Saturday. 

Figure 3 shows the temporal alignment between furnace power consumption and 
hourly electricity prices throughout the week. This visualization highlights the energy-
intensive nature of the process and the variability in electricity costs that motivates 
optimization.
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Fig. 3. Real Furnace Power Consumption and Electricity Price Over One Week in April 2024 

5 Results 

This section presents the outcomes of the proposed batch scheduling optimization frame-
work, which integrates dynamic electricity pricing with high-resolution energy consump-
tion data to minimize operational energy costs. The analysis proceeds from controlled 
experiments using synthetic datasets to real-world validation based on operational data 
from an industrial melting facility in Denmark. The goal is to demonstrate the feasibility 
and effectiveness of shifting batch start times to align energy-intensive operations with 
periods of lower electricity prices. Results are validated using both synthetic and real-
world datasets from a Danish foundry, highlighting the achievable cost savings under 
practical constraints. 

5.1 Cost Analysis Based on Synthetic Data 

The synthetic experiments systematically assessed cost reduction potential under con-
trolled conditions. The electricity price dataset covers a continuous 72-h period starting 
at 00:00 on March 14, 2025. Each synthetic batch includes multiple melting cycles, 
reflecting real industrial operations. In this experiment, the batch runs for 50 h, enabling 
full flexibility to explore all feasible start times within the 72-h price window. Figure 4 
illustrates the total electricity cost associated with each possible shifted start time for 
the batch within the price window. A total of 22 discrete shifting options were evaluated 
at hourly increments. The figure clearly shows that the batch start time has a signifi-
cant impact on total electricity costs, with cost variations driven by the alignment of 
energy-intensive production phases with periods of low or negative electricity prices.
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Fig. 4. Total Batch Cost for a Single Batch at Different Start Times Over a 72 h Synthetic Price 
Window 

5.2 Batch Identification and Cost Analysis from Operational Data 

To quantify the cost implications of real-time electricity pricing on industrial melting 
processes, furnace power consumption data recorded at 10 s intervals was analyzed 
over a six-day operational window. Using a heuristic temporal separation criterion— 
specifically, a minimum one-hour gap between consecutive consumption events—four 
distinct operational batches were identified. These batches are visually depicted in Fig. 5, 
where each is color-coded and overlaid on the corresponding electricity price profile in 
the DK1 zone of Denmark. The figure illustrates the temporal alignment between batch 
activity and hourly electricity price fluctuations. Each batch was delineated by its precise 
start and end timestamps and subsequently analyzed to compute the total electricity cost 
by synchronizing the high-resolution power data with the hourly pricing signals. 

Fig. 5. Identified Batches Within the Week Aligned with Electricity Price 

Table 2 presents the temporal attributes and electricity costs associated with the four 
identified operational batches. The durations of these batches ranged from approximately 
12.44 to 38.94 h. Correspondingly, electricity expenditures varied significantly, reflecting 
differences in both duration and the timing of energy consumption relative to hourly price 
fluctuations.
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Table 2. Summary of Identified Batches 

Batch Start time to End time Duration [h] Cost [DKK] 

1 2024-04-14 16:47:00 (Sunday) 
2024-04-16 07:43:40 (Tuesday) 

38.94 67,228.97 

2 2024-04-16 08:50:40 (Tuesday) 
2024-04-17 12:18:10 (Wednesday) 

27.46 60,150.09 

3 2024-04-17 13:19:20 (Wednesday) 
2024-04-18 17:50:40 (Thursday) 

28.52 75,601.48 

4 2024-04-18 20:00:50 (Thursday) 
2024-04-19 08:27:20 (Friday) 

12.44 25,209.68 

5.3 Single Batch Optimization 

To evaluate the potential cost savings achievable through temporal realignment, Batch 
1 was selected for detailed optimization analysis. The original consumption profile of 
Batch 1, spanning from 16:47 on Sunday, April 14 to 07:43 on Tuesday, April 16, is 
illustrated in Fig. 6, alongside the corresponding hourly electricity price. The power pro-
file shows multiple melting cycles executed during variable pricing periods, indicating 
an opportunity for cost reduction through strategic rescheduling. 

Fig. 6. Original Power Consumption Profile of Batch 1 and Corresponding Electricity Price 

The optimization window was defined from 17:00 on Sunday—the next full hour 
after the original batch start—through to 16:00 on Friday, April 19, marking the latest 
operationally feasible end time within the week. A grid search with one-hour increments 
was performed to evaluate the cost impact of all possible shifted batch schedules within 
this window. 

Figure 7 depicts the total electricity cost associated with each shifted version of 
Batch 1. The analysis identified the minimum-cost schedule occurring when the batch 
commenced at 09:00 on Monday, April 15 and concluded at 23:56 on Tuesday, April 16.
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This rescheduling resulted in a total electricity cost of 60,609.81 DKK, compared to the 
original 67,228.97 DKK—a reduction of 6,619.16 DKK, or approximately 9.8%. The 
cost curve shows that significant variation arises even within a narrow shifting window, 
reinforcing the importance of price-aware scheduling. 

Fig. 7. Electricity Cost of Batch 1 Across All Possible Shifted Start Times 

To further elucidate the benefit of this shift, Fig. 8 contrasts the original and opti-
mized power consumption profiles overlaid on the electricity price curve. The optimized 
batch execution clearly avoids peak pricing periods while maintaining the same process 
duration and sequence, thereby validating the effectiveness of the proposed optimiza-
tion strategy in reducing operational energy costs without compromising production 
integrity. 

Fig. 8. Comparison of Original and Optimized Batch 1 Profiles Aligned with Electricity Price 

The same optimization procedure was independently applied to all four batches, 
yielding notable cost reductions in each case. Optimal start times were identified through 
exhaustive testing of feasible shifts, assuming non-overlapping execution and a minimum 
one-hour interval between batches. As summarized in Table 3, electricity cost savings
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ranged from 6,619.16 DKK to over 45,000 DKK. While this approach does not consider 
interactions between batches, it highlights the maximum potential for cost reduction 
when scheduling is performed independently. 

Table 3. Optimized Schedules and Savings for All Batches 

Batch Start_time to End_time Optimal Cost [DKK] Saved Cost [DKK] 

1 2024-04-15 09:00:00 (Sunday) 
2024-04-16 23:56:40 (Tuesday) 

60,609.81 6,619.16 

2 2024-04-15 13:00:00 (Monday) 
2024-04-16 16:27:30 (Tuesday) 

28,600.68 31,549.41 

3 2024-04-15 12:00:00 (Monday) 
2024-04-16 16:31:20 (Tuesday) 

30,301.95 45,299.53 

4 2024-04-15 22:00:00 (Monday) 
2024-04-16 10:26:30 (Tuesday) 

11,068.80 14,140.88 

5.4 Global Schedule Optimization 

Building upon the single-batch optimization results, the method was extended to generate 
a globally optimized schedule for all four batches within the same operational week. 
The objective was to minimize the total electricity cost while satisfying key operational 
constraints—namely, non-overlapping batch execution and a minimum one-hour buffer 
between consecutive batches. 

Table 4 summarizes the globally optimized start and end times for each batch, along 
with the corresponding electricity cost and the savings achieved relative to the original 
schedules. Although Batch 2 incurred a higher cost than in its original schedule, the 
overall optimization led to a substantial reduction in total weekly energy expenses—from 
228,190.21 DKK to 211,407.09 DKK—resulting in net savings of 16,783.12 DKK. 

Table 4. Optimized Weekly Schedule and Electricity Cost Summary 

Batch Start_time to End_time Optimal Cost [DKK] Saved Cost [DKK] 

1 2024-04-15 09:00:00 (Monday) 
2024-04-16 23:56:40 (Tuesday) 

60,453.70 6775.27 

2 2024-04-17 03:00:00 (Wednesday) 
2024-04-18 06:27:30 (Thursday) 

71,860.63 −11,710.54 

3 2024-04-18 11:00:00 (Thursday) 
2024-04-19 15:31:20 (Friday) 

54,468.37 21,133.11 

4 2024-04-14 17:00:00 (Sunday) 
2024-04-15 05:26:30 (Monday) 

24,624.39 585.29 

The optimized schedule is visualized in Fig. 9, which illustrates the temporal align-
ment of batch operations with the hourly electricity price profile. The figure highlights
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how the rescheduling preferentially aligns batch activity with lower-price periods across 
the week. 

Fig. 9. Globally Optimized Weekly Batch Schedule Aligned with Electricity Price Profile 

6 Discussion 

This study confirms the practical potential of data-driven scheduling optimization to 
reduce electricity costs in energy-intensive industrial batch processes under dynamic 
pricing. Experimental results using both synthetic and real industrial data demonstrate 
that strategically shifting batch start times—without altering production durations or out-
put volumes—yields substantial economic benefits, reinforcing and extending previous 
research [1, 3, 12, 16]. 

In synthetic experiments, batch processes modeled over a 72-h price window showed 
that simply shifting batch start times significantly reduced electricity costs. In the single-
batch scenario, moving Batch 1 from Sunday 16:47 to Monday 09:00 saved approxi-
mately 6,619 DKK, consistent with prior studies such as [3] and [12], which demon-
strated cost benefits from aligning energy-intensive operations with off-peak tariffs. 
However, unlike these studies that employed heuristic or multi-objective approaches, 
the present method guarantees global cost optimality through exhaustive combinatorial 
search. 

The multi-batch (global) optimization analysis further underscores the superior-
ity of holistic scheduling strategies over independent adjustments. Across the six-day 
production schedule involving four batches, global optimization achieved cumulative 
weekly savings of 16,783.12 DKK, representing a 7.4% reduction in total electricity 
costs. This result remained robust despite slight cost increments observed for individ-
ual batches, notably Batch 2. Similar observations were highlighted by recent studies 
using combinatorial and evolutionary approaches [1, 16], where global optimization con-
sistently outperformed isolated batch adjustments. Moreover, the implementation effort 
required is relatively modest, further enhancing the practical viability of this optimization 
framework for industrial settings. 

Compared to heuristic methods such as genetic algorithms or PSO, the exhaustive 
search used in this study guarantees global optimality but incurs higher computational
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cost. While many prior models rely on synthetic data or simplified constraints, this 
framework integrates real industrial data, high-resolution power profiles, and operational 
constraints such as non-overlapping batches and mandatory downtimes [2, 4, 5, 16, 17]. 
In contrast to recent stochastic or machine learning-based scheduling approaches [4], it 
uses deterministic inputs and avoids the need for large-scale training data. Although not 
algorithmically novel, the method demonstrates strong alignment with real production 
conditions and serves as a practical roadmap for industrial adoption. It also offers a 
robust benchmark against which heuristic and data-driven alternatives can be evaluated 
[1, 16, 18]. 

Nevertheless, two caveats warrant emphasis. First, although power is measured every 
10 s, prices are only hourly, so cost estimates—despite sub-minute load fidelity—can-
not exceed the one-hour price granularity without true intra-hour market data. Second, 
our exhaustive grid search grows factorially with batch count and time-step resolution, 
becoming impractical for large or finer-grained problems; in such cases, meta-heuristics, 
decomposition methods, or parallelized searches can deliver near-optimal schedules 
within reasonable runtimes. 

Optimization runtimes on a test system equipped with a 12-core, 3.7 GHz processor 
and 64 GB RAM averaged less than 10 s for single-batch scheduling and approximately 
4 min for scheduling four batches over a six-day planning horizon. While these runtimes 
are acceptable for offline planning, the factorial growth in computational complexity 
associated with increasing batch numbers or finer discretization poses scalability chal-
lenges. Potential enhancements include pruning strategies such as branch-and-bound 
or employing heuristic algorithms to obtain rapid, near-optimal solutions. Furthermore, 
by incorporating multi-machine configurations or inter-batch dependency constraints, 
this optimization framework can readily extend to more complex, networked industrial 
production scenarios. 

Detailed power consumption profiles revealed within each batch multiple melting 
cycles with intermittent feeding. This fine-grained operational characteristic, explicitly 
observed in real data analyses, suggests untapped potential for further optimization. 
Future research should explore intra-batch scheduling strategies, including temporary 
pauses during peak prices, to unlock additional flexibility and cost reductions. 

7 Conclusion 

This study proposed a data-driven scheduling optimization framework for industrial 
batch processes under dynamic electricity pricing. By integrating high-resolution power 
consumption profiles with market price signals, the method identifies optimal batch start 
times that substantially reduce electricity costs without disrupting operations. Validation 
using synthetic and real industrial data from a Danish foundry demonstrated cost savings 
of 6,619 DKK for a single batch and 16,783 DKK across four batches—equivalent to a 
7.4% weekly reduction in electricity expenditure—highlighting the benefits of holistic 
over isolated scheduling. 

The research advances the field by providing a globally optimal combinatorial opti-
mization method, overcoming the limitations of heuristic approaches [12, 16, 19]. Incor-
porating both synthetic and real-world data ensures robust validation, while the use of 10
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s consumption intervals enhances cost modeling precision and responsiveness to market 
fluctuations [3–5]. 

Practically, the framework offers a ready-to-implement tool for energy managers 
to achieve significant savings without additional investments. Its alignment with real-
world constraints ensures easy integration into existing workflows, enabling industries 
to leverage dynamic pricing for both economic and sustainability gains. 

Despite its contributions, this study has certain limitations. Limitations include the 
use of discretized hourly intervals, reliance on deterministic price forecasts, and focus 
on single-machine scenarios. Addressing these through finer time resolutions, stochastic 
price modeling [4, 5], and extension to multi-machine environments can further enhance 
applicability and savings potential. Exploring intra-batch optimization also presents a 
promising future direction. 

This work contributes to the field of energy-aware production scheduling by demon-
strating that significant, verifiable cost savings can be achieved through data-driven batch 
scheduling under dynamic electricity pricing, with strong alignment to both operational 
feasibility and sustainability goals. 
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Abstract. Electric Vehicles (EVs) are one of the most promising sus-
tainable transportation solutions but require efficient refueling strategies 
to complete their long-distance journeys. When addressing the charg-
ing station location problem (CSLP), a well-developed network enables 
operators to strategically locate charging stations, efficiently mitigating 
range anxiety among EV drivers, and supporting the wider adoption of 
EVs. This study provides a description of the methodology for creating a 
real-world CSLP instance based on the Irish highway network and traffic 
count data. We capture key settlements and intersections from the Irish 
national road map, and construct the Irish highway network as a graph, 
made up of motorways, national primary roads, and national secondary 
roads. Applying the Lincoln MPO Travel Model, we estimate the num ber
of EV traffic flows between all origin-destination pairs based on traffic
counts on each road segment. This study evaluates the Irish highway
network test instance by analyzing graph-based metrics and compares
its characteristics with other widely-used CSLP instances from the liter-
ature. The results of the comparative analysis indicate that the proposed
Irish highway network is a well-connected and favourable test instance
to evaluate CSLP optimization models.

Keywords: OR in Energy · Sustainable Transportation · Charging 
Station Location Problem · Irish Highway Network

1 Introduction 

Severe climate change has attracted worldwide attention, prompting urgent dis-
cussions among governments, researchers, and policymakers. A total of 194 par-
ties, including 193 states and the European Union, signed the Paris Agreement, 
targeting to achieve carbon neutrality by the mid-21st century. As the second-
largest contributor to global greenhouse gas emissions among all energy-related
sectors, the emissions from transport collectively accounts for approximately one-
quarter of all emissions worldwide [10]. Consequently, the transition to electric 
vehicles (EVs) or other sustainable transport solutions is a key strategy for reduc-
ing g reenhouse gas emissions and achieving carbon neutrality. As the adoption
c The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
I. Martinac et al. (Eds.): EIA Nordic 2025, LNCS 16095, pp. 255–266, 2026. 
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of EVs increases, the availability and accessibility of the charging infrastruc-
ture become critical to ensuring an efficient transportation system that supports 
EV charging demands. The charging station location problem (CSLP) aims to 
strategically locate charging stations t o allow EVs with limited driving ranges
to refuel, so that they can complete their journey without running out of charge
[11]. 

In Ireland, the Electric Vehicles Charging Infrastructure Strategy 2022-2025
[4] launched a 100 million euro investment on public charging infrastructure to 
assure car users the feasibility of switching to an EV, as part of the national 
strategy to have one million EVs on the road by 2030. Existing research on the 
CSLP relies heavily on network-based optimization models to determine optimal 
locations of charging stations. Therefore, to optimize the strategy for charging 
station deployment in Ireland, a realistic and accurate representation of the 
Irish highway network is needed, including nodes and highway links, candidate
locations for charging stations, and traffic volumes in origin-destination (O-D)
pairs. Without a realistic data-driven test instance, advanced CSLP optimization
models may yield non-optimal and impractical solutions.

In existing CSLP literature, there is a lack of a realistic data-driven Irish 
highway network, which limits the applicability of CSLP solutions to actual 
infrastructure planning. How to construct a realistic representation of the Irish 
highway network with a reliable traffic flow dataset for solving the CSLP emerges 
as our research question. To address this research question, we demonstrate 
the approach t o constructing the Irish highway network instance by integrating
geographical information and traffic count data that researchers can adapt to
develop realistic networks for solving the CSLP in their own case studies.

This paper is structured as follows. Section 2 presents the background litera-
ture on CSLP optimization models and the test net works used to solve the CSLP.
Section 3 describes the process for building the Irish highway network instance 
and generating the traffic count data for each O-D pair. Section 4 presents the 
evaluation of our developed Irish highway network along with a comparison with 
other commonly used test networks. Section 5 summarizes the notable results and 
concludes our study.

2 Literature Review 

A wide range of modeling approaches has been employed in CSLP studies, while 
available test instances used in these studies are very limited, as summarized in
Table 1. 

Simchi-levi and Berman [19] build a sample 25-node network to test their 
heuristic algorithm for the Traveling Salesman Location Problem (TSLP). The
Flow-Capturing Location Model (FCLM) [7], developed to address facility loca-
tion problems with flow-based demands, first employs the 25-no de network from
Simchi-levi and Berman [19]. The FCLM utilizes population weights attributed 
to each node and applies a gravity model [6] to generate traffic flow data of 
O-D pairs. The model assumes that demand flows can only be captured if at
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least one facility is located on the shortest path and maximizes the number of 
flows that a fixed number of facilities can capture. Then, the same 25-node net-
work is widely used in flow-based CSLP models, suc h as the first Flow Refueling
Location Model (FRLM), which incorporates limited vehicle driving range in the
FCLM [13]; the modified FRLM with dispersion of candidate sites on arcs [14]; 
the Deviation Flow Refueling Location Model (DFRLM), which allows EVs to
deviate from their shortest paths [12]. 

The Sioux Falls network is another classic test network, quite often used in 
continuous network design problems. Originally constructed to validate efficien t
methods for solving road network equilibrium traffic assignment problems [16], 
the Sioux Falls network is also employed in many CSLP models. For example, it 
is used in the Multipath Refueling Location Model (MPRLM) [9], which allows 
electric vehicles to take multiple deviation paths between all O-D pairs.

Several network instances employed for the CSLP are developed based on real 
road networks. Considering the capacity of charging stations, Upchurch et al. [22] 
test the capacitated Flow Refueling Location Model (CFRLM) on a simplified 
version of the Arizona state highway network. The network consists of Arizona’s 
25 largest cities and links between them, including major US state and interstate 
highways. Candidate sites for charging stations in the CFRLM include the 25
nodes, as well as another 25 nodes distributed using the Added Node Dispersion
Problem method (ANDP) [15] to allow for station locations between the major 
nodes. The flow volumes between 25 cities are estimated using a gravity model,
based on their population weights.

Due to the limited available test networks, some CSLP studies also employ 
randomly generated net work instances to evaluate proposed optimization mod-
els [1, 8]. When studying a capacitated charging station location problem while 
accounting for multi-period travel demand, Hosseini et al. [8] generate test net-
works by randomly placing nodes in a .100×100 grid using a uniform distribution. 
Then, they generate a Minimum Spanning Tree (MST) to ensure that all nodes 
are connected and add extra links for better connectivity. The traffic flows of 
randomly selected O-D pairs are estimated using the same gravity model with
randomly assigned node weights.

Drawing from the discussion, CSLP studies still lack available, realistic and 
large-scale test instances developed specifically for solving the CSLP, and most 
test instances used in CSLP studies estimate traffic flows in O-D pairs by using 
the g ravity model based on node population weights, which may result in notable
deviations from real-world travel demands.

3 Highway Network Construction Methodology for CSLP 

This section describes the methodology for building the CSLP test instance of 
the Irish highway network, ensuring accurate modeling of network topology and 
traffic flow count data, adapted from approaches in previous studies [1, 8, 18].
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Table 1. Key Features of Available Test I nstances Used in CSLP Studies

Authors Networks Nodes Edges Candidate 
Sites 

O-D pairs Traffic 
Input 

Hodgson 
(1990) [7]; 
Kuby and L im
(2005) [13]; 
Kim and Kub y
(2012) [12] 

25-node 
network by 
Simchi-Levi & 
Berman
(1988) [19] 

25 43 
undirected 

25 nodes 600 directed Estimated 
via gravity 
model

Kuby and Lim 
(2006) [14] 

25-node 
network by 
Simchi-Levi & 
Berman
(1988) [19] 

25 43 
undirected 

25 nodes & 
added sites

600 directed Estimated 
via gravity 
model

Upchurch et 
al. (2009) [22] 

Arizona state 
highway 
net work

25 39 
undirected 

25 nodes & 
added sites

600 directed Estimated 
via gravity 
model

Huang et al. 
(2015) [9] 

Sioux Falls 
network [16] 

24 552 
directed 

24 nodes 176 directed Given O-D 
pairs

Capar et al. 
(2013) [1]; 
Hosseini et a l.
(2017) [8] 

Randomly 
generated 
instances

25–250 / All nodes 
generated

Randomly 
selected 

Estimated 
via gravity 
model

3.1 Node Placement and Highw ay Connnections

The Irish highway test instance for CSLP is composed of a set of nodes repre-
senting settlements and highway intersections, and a set of edges representing 
the connecting highway links. We first d etermine the locations of these nodes
based on the topology of the Irish highway network.

Obtaining the Irish national road network from T ransport Infrastructure Ire-
land [20], we import the downloaded KML file, which contains the geographic 
information for motorways, national primary roads, and national secondary 
roads, into QGIS for spatial analysis. Integrated with geographic information, we 
capture nodes along the highways, including key settlements, highway intersec-
tions, and junctions. The placement of nodes is determined to ensure a compre-
hensive representation of the structure and connectivity of the highway network. 
We then classify these selected nodes as “centers” that can generate and attract 
traffic flow s or “connections”. “Connections” do not generate travel demands but
serve to maintain network connectivity and enable more different route options
for each O-D pair. To determine the classification, we collect the population of
settlements near these nodes from the 2022 Ireland Census report [2]. The subset 
of “centers” is selected based on the following criteria, including population size
and spatial distribution:
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– As defined by the Central Statistics Office of Ireland, a settlement is classified 
as a city if it has a population exceeding 50,000, and those with populations 
between 1,500 and 49,999 are classified as urban towns, while those with fewer 
than 1,500 inhabitants are considered rural areas. In our study, all nodes near 
the s ettlements with population exceeding 5,000 are collectively referred to
as “centers”, which can generate and attract observable number of inter-city
traveling flows;

– In remote or sparsely connected regions, the nodes with relatively small pop-
ulations are also classified as “centers”, to prevent isolated areas from being 
excluded in the analysis of travel demand patterns. This consideration helps
ensure generated traffic flows are geographically well-distributed across the
entire network;

– Nodes located near the border with Northern Ireland are also classified as 
“centers” to account for cross-border traffic flows.

We then connect these nodes with Irish highway links. Using the geometry-
based field calculator in QGIS, the lengths of all highway links between these 
identified nodes are measured in meters, ensuring accurate measurements of 
existing highway connection s egments. The final test instance of the Irish high-
way network is represented as a graph G= (V,E), where:

– . V represents the set of total 90 nodes, including 60 “centers” that generate and 
attract inter-city travel demands in traffic flow analysis and 30 “connections” 
serving as highway intersections and junctions. All these nodes are candidate
locations for charging stations in the CSLP;

– .E represents the set of edges, consisting of 152 undirected links that corre-
spond to r oad segments between all nodes.

Figure 1 illustrates the test instance of the Irish national highway network, 
visualised using the yED Graph Editor based on the determined nodes and links. 
The round nodes represent “centers” that generate and attract inter-city travel
demands, while the triangle “connections” represent other highway intersections
and junctions.

In addition, the existing charging stations on Irish highways are also included 
in our proposed instance, based on the Ireland car c harging points map provided
by the Electricity Supply Board [5]. Given that every charging station is placed 
at one of those nodes in the Irish highway instance, existing charging points, 
which are in reality either on a high way node or midpoint link, are associated
to the nearest node location.

3.2 EV Traffic Flo w Estimation

To effectively address the CSLP on the Irish highway network, a realistic dataset 
of traffic flow on the highway network instance is essential. Instead of using 
population weights of nodes, this study utilizes traffic counts on the highway
road to estimate EV traffic flows in O-D pairs on the Irish highway network.
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Fig. 1. The Irish Highway Network for Charging Station Location Problems

Transport Infrastructure Ireland provides traffic count data [21] on road seg-
ments, with a dynamic mapping interface to detail the traffic volume by hour 
of day and vehicle class from traffic counters in a variety of formats. However, 
most CSLP optimization models require traffic flow data specifying the num-
ber of v ehicles traveling between O-D pairs. To bridge this gap, we adopted the
gravity-based Lincoln MPO Travel Model [17] to estimate O-D flows between 
center nodes in our constructed instance using available traffic count data.

The gravity model assumes that the trips produced at an origin and attracted 
to a destination are directly proportional to the total trip productions at the 
origin and the total attractions at the destination, and inversely proportional to
the total attractions of all zones, which is represented as:
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.Tij =
AjFijKij
n

j=1

AjFijKij

× Pi, ∀i, j (1) 

where: 

– .Tij is the number of trips produced at . i and attracted t o . j; 
– .Pi is the total trip production at . i; 
– .Aj is the total trip attraction at . j; 
– .Fij is a calibration term for interchange . ij, representing a friction factor or 

travel time factor;
– .Kij is a socioeconomic adjustment factor for interchange . ij; 
– . i is a o rigin zone;
– . j is a d estination zone;
– . n is number of zones.

The equation distributes the number of trips produced at each origin . i (. Pi) 
across all potential destinations . j, proportionally based on the product of total 
attractiveness of the destination (.Aj), the impedance or friction factor b etween
zones (.Fij) and any socioeconomic adjustment factors (.Kij). It ensures that the 
sum of trips from zone . i to all destinations equals the total production . Pi. 

To apply the MPO Travel Model to estimate the number of O-D pairs 
between center nodes in the Irish highway instance, we collect the daily traf-
fic volume from the n earest traffic counters of center nodes. For each center
node, the trip production (. Pi) is calculated by aggregating traffic volumes on 
all highway segments leading out of the node. Conversely, the trip attraction
(.Aj) is determined by aggregating the traffic volumes from all highway seg-
ments entering the node. Moreover, when calculating the trip production and 
attraction of nodes adjacent to Northern Ireland, we take the number of trips
entering and leaving Northern Ireland into account. The friction factors (.Fij) 
in the Lincoln MPO Travel Model are estimated using the travel time between 
O-D pairs, which inversely correlates with the shortest path length. In addition,
the K-factors (.Kij) are not considered i n our estimation.

Using this approach, we transform traffic count data on road segments into 
a structured O-D matrix of traveling demands, ensuring the compatibility of 
the available collected data and the input dataset of CSLP models for further
analysis and optimization. According to Climate Action Plan [3], the number 
of EVs registered in Ireland is targeted to exceed one million by 2030, with 
additional 125,000 sustainable journeys. Based on this projected growth, we 
assume that private EVs will account for approximately 30% of the total highway
traffic volume by 2030. By applying this proportion, the estimated traffic flow
data of O-D pairs for private EVs is generated.

The data sets for our Irish highway network instance are available on Github1, 
including CSV files of nodes, edges, current charging points and EV traffic
1 Click here to do wnload.

https://github.com/JuneX2000/Ireland-Highway-Network-Instance
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flow O-D pairs, a visualisation of the Irish highway network, and the Python 
import script. A README file is provided within the repository to do cument
the instance metadata and explain the structure and contents of the dataset.

4 Results and Analysis 

The goal of this study is to construct and validate a realistic test instance of the 
Irish highway network for solving the CSLP. We conduct a series of measurements 
of graph-based metrics that capture key topological and structural features o f the
network, such as size and scale, connectivity, diameter, average path length and
average edge length, as summarized in Table 2. By comparing evaluation metrics 
with those instances used in previous CSLP studies, the results demonstrate 
that our developed Irish highway instance serves as a realistic and empirically
validated test network for EV infrastructure planning.

Table 2. Comparison of Test Networks Used in CSLP Models

Network Nodes Edges Avg Degree Diameter Avg Path Length Avg Edge Leng th
25-node 
Network 
(1988) [19] 

25 43 undirected 3.44 38.00 14.23 (0.374) 4.60 (0.121) 

Sioux Falls 
Network 
(1975) [16] 

24 76 directed 3.16 730 300.2 (0.411) 104.02 (0.142) 

Arizona State 
Network 
(2009) [22] 

25 39 undirected 3.12 431.00 205.10 (0.476) 74.85 (0.174) 

Ireland 
Highway 
Network 

90 152 undirected 3.38 555.10 km 202.35 km (0.365) 36.24 km (0.065)

Legend. Avg Degree: The average number of edges per node in the graph; 
Diameter: The longest shortest path length between any two nodes; 
Avg Path Length: The average shortest path lengths be tween all pairs of nodes;
Avg Edge Length: The average length of all edges;

4.1 Size and Scale

Compared to benchmark test networks such as the 25-node network [19], the 
Sioux Falls network [16] and the Arizona state network [22], our constructed 
Irish highway network instance provides a large-scale structure, consisting of 
90 nodes and 152 edges, and totaling over 3,500 traffic flow O-D pairs. With 
a higher number of nodes, edges, and potential charging station locations, the 
number of variables and constraints in CSLP optimization models grows sub-
stantially, making it more computationally difficult to find an optimal solution.
This prompts the application and development of advanced heuristics to tackle
real-world CSLP case studies.
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4.2 Connectivity 

Figure 2 shows the degree distribution in the Irish highway network. Most nodes 
have a degree of 3 or 4, indicating typical highway intersections and junctions. A 
few nodes have very high degrees (e.g. 6 or 7), likely representing major highway 
junctions or big cities. Notably, several nodes have a degree of 1, indicating 
that they are endpoints within the highway network, often in remote or sparsely 
connected regions. While such nodes do n ot significantly contribute to overall
network connectivity or serve as high-traffic points, they are critical for ensuring
the accessibility of the Irish highway network, especially for settlements and
attraction points in rural areas.

Fig. 2. Degree distribution of nodes in the Ireland highw ay network

To compare the connectivity of different networks, average degrees are mea-
sured, presented in Table 2, simply indicating the average number of edges per 
node in the graph. When compared to smaller benchmark test networks in CSLP 
studies, the average node degree of 3.38 in our network indicates a well-connected 
graph structure. This level of connectivity is particularly notable, considering the
inclusion of remote nodes that, despite their weak connections, can enable EV
traffic flows throughout the whole highway network.

4.3 Diameter, Average Path Length, and A verage Edge Length

In the Irish highway network, the diameter defined as the longest shortest path 
between any two nodes is 555.10 km. The average shortest path lengths between 
all pairs of nodes equals 202.35 km and the average length of all edges in the 
network is only about 36 km. To enable comparisons across different networks,
the values of the average path length and average edge length are scaled by
dividing them by the network diameter. The resulting scaled values are shown
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in parentheses in Table 2. When comparing the scaled values of average path 
length and average edge length with the same graph diameter, the Irish highway 
network shows the smallest values among the networks analyzed. The shorter 
edges and path lengths relative to the diameter indicates that nodes in our 
test instance are more easily reachable on average and the network supports a 
larger number of alternative deviation paths for EVs bet ween O-D pairs with
limited vehicle driving ranges. This suggests the Irish highway instance exhibits
a higher level of accessibility and connectivity, enabling EV users to have more
route options, thereby enhancing route flexibility in CSLP applications.

This evaluation validates that the instance not only reflects the spatial layout 
of the Irish highway network but also demonstrates strong connectivity, higher 
accessibility, and with a larger scale compared to other networks. It proves that 
the I rish instance is a well-suited and favourable choice as a realistic test instance
developed specifically for solving the CSLP.

5 Conclusion and Findings 

This study aims to develop a realistic test instance of the Irish highway network 
for solving the CSLP, while providing a detailed approach that can be replicated
in similar case studies using available geographical and traffic data.

We have shown that by integrating the national road map, spatial data, 
population distribution, and traffic count data, we can produce a realistic CSLP 
instance that effectively captures real-world conditions and travel demands. This 
study first locates nodes along the highways, and classifies them into two cate-
gories: “centers” and “connections”. Using the GIS approach, we then obtain the 
measurements of highway connections as lengths of edges in the Irish highway 
network. After determining the Irish highway network structure, we apply the 
Lincoln MPO Travel Model to estimate the number of travel demands gener-
ated between selected O-D pairs, based on daily traffic count data collected on
highway segments. Subsequently, we evaluate the Irish highway network, analyze
graph-based metrics and compare them with those of benchmark test networks.
The results demonstrate that the developed Ireland highway network is well con-
nected and exhibits stronger accessibility, making it a practical test instance for
solving the CSLP.

Even though the Irish highway network instance performs well in terms 
of scale, connectivity, and accessibility, further enhancements can be explored 
beyond the scope of this paper. For example, we can expand the highway network 
to include regional roads and incorporate more candidate locations to enhance 
the accuracy of optimal solutions for charging station locations in the whole 
transportation system. To better accommodate real-world conditions, temporal 
variations in traffic and charging demands, as well as elevation variations along
highway roads, can be taken into consideration. In addition, varying charging
behaviours and multimodal networks can be more explored for more advanced
approaches to charging station placement strategies.



The Irish Highway Network Instance 265

Acknowledgements. Jingyu Xiang is a PhD student at the University College Dublin 
College of B usiness, funded by the China Scholarship Council (CSC).

References 

1. Capar, I., Kuby, M., Leon, V.J., Tsai, Y.-J.: An arc cover-path-cover formula-
tion and strategic analysis of alternative-fuel station locations. Eur. J. Oper. Res.
227(1), 142–151 (2013)

2. Central Statistics Office: Census 2022 Summary Results. Government of Ireland
(2022). https://data.cso.ie/product/C2022SR 

3. Department of the Environment, Climate and Communications: Climate Action 
Plan 2024. Government of Ireland (2023). https://www.gov.ie/en/publication/ 
79659-climate-action-plan-2024/ 

4. Department of Transport and ZEVI: Electric Vehicle Charging Infrastruc-
ture Strategy 2022–2025. Government of Ireland (2023). https://www.zevi.ie/ 
publications/ev-infrastructure-strategy-2022-2025 

5. Electricity Supply Board: Charge Point Map. G overnment of Ireland (2025).
https://esb.ie/what-we-do/ecars/charge-point-map# 

6. Fotheringham, A., O’Kelly, M.: Spatial Interaction Models: Formulations and 
Applications. Kluwer Academic Publishers (1989)

7. Hodgson, M.: A flow-capturing location-allocation model. Geogr. Anal. 22(3), 270–
279 (1990)

8. Hosseini, M., MirHassani, S.A., Hooshmand, F.: Deviation-flow refueling location 
problem with capacitated facilities: model and algorithm. T ransp. Res. Part D:
Transp. Environ. 54, 269–281 (2017)

9. Huang, Y., Li, S., Qian, S.: Optimal deployment of alternative fueling stations on 
transportation networks considering deviation paths. Networks Spatial Econ. 15
(2015)

10. IEA: Global energy-related CO. 
2 emissions by sector. IEA, Paris. https://www. 

iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector. 
Licence: CC BY 4.0

11. Kchaou-Boujelben, M.: Charging station location problem: a comprehensive review 
on models and solution approaches. Transp. Res. Part C: Emerging Technol. 132,
103376 (2021)

12. Kim, J.-G., Kuby, M.: The deviation-flow refueling location model for optimizing 
a network of refueling stations. Int. J. Hydrogen Energy 37(6), 5406–5420 (2012)

13. Kuby, M., Lim, S.: The flow-refueling location problem for alternative-fuel ve hicles.
Socioecon. Plann. Sci. 39(2), 125–145 (2005)

14. Kuby, M., Lim, S.: Location of alternative-fuel stations using the flow-refueling 
location model and dispersion of candidate sites on arcs. Netw. Spat. Econ. 7(2),
129–152 (2006)

15. Kuby, M., Lim, S., Upchurch, C.: Dispersion of nodes added to a network. Geogr.
Anal. 37(4), 383–409 (2005). https://doi.org/10.1111/j.0016-7363.2005.03704002. 
x 

16. LeBlanc, L.J., Morlok, E.K., Pierskalla, W.P.: An efficient approach to solving the 
road network equilibrium traffic assignment problem. Transp. Res. 9(5), 309–318
(1975). https://doi.org/10.1016/0041-1647(75)90030-1

https://data.cso.ie/product/C2022SR
https://data.cso.ie/product/C2022SR
https://data.cso.ie/product/C2022SR
https://data.cso.ie/product/C2022SR
https://data.cso.ie/product/C2022SR
https://data.cso.ie/product/C2022SR
https://www.gov.ie/en/publication/79659-climate-action-plan-2024/
https://www.gov.ie/en/publication/79659-climate-action-plan-2024/
https://www.gov.ie/en/publication/79659-climate-action-plan-2024/
https://www.gov.ie/en/publication/79659-climate-action-plan-2024/
https://www.gov.ie/en/publication/79659-climate-action-plan-2024/
https://www.gov.ie/en/publication/79659-climate-action-plan-2024/
https://www.gov.ie/en/publication/79659-climate-action-plan-2024/
https://www.gov.ie/en/publication/79659-climate-action-plan-2024/
https://www.gov.ie/en/publication/79659-climate-action-plan-2024/
https://www.gov.ie/en/publication/79659-climate-action-plan-2024/
https://www.gov.ie/en/publication/79659-climate-action-plan-2024/
https://www.zevi.ie/publications/ev-infrastructure-strategy-2022-2025
https://www.zevi.ie/publications/ev-infrastructure-strategy-2022-2025
https://www.zevi.ie/publications/ev-infrastructure-strategy-2022-2025
https://www.zevi.ie/publications/ev-infrastructure-strategy-2022-2025
https://www.zevi.ie/publications/ev-infrastructure-strategy-2022-2025
https://www.zevi.ie/publications/ev-infrastructure-strategy-2022-2025
https://www.zevi.ie/publications/ev-infrastructure-strategy-2022-2025
https://www.zevi.ie/publications/ev-infrastructure-strategy-2022-2025
https://www.zevi.ie/publications/ev-infrastructure-strategy-2022-2025
https://www.zevi.ie/publications/ev-infrastructure-strategy-2022-2025
https://esb.ie/what-we-do/ecars/charge-point-map#
https://esb.ie/what-we-do/ecars/charge-point-map#
https://esb.ie/what-we-do/ecars/charge-point-map#
https://esb.ie/what-we-do/ecars/charge-point-map#
https://esb.ie/what-we-do/ecars/charge-point-map#
https://esb.ie/what-we-do/ecars/charge-point-map#
https://esb.ie/what-we-do/ecars/charge-point-map#
https://esb.ie/what-we-do/ecars/charge-point-map#
https://esb.ie/what-we-do/ecars/charge-point-map#
https://esb.ie/what-we-do/ecars/charge-point-map#
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector
https://doi.org/10.1111/j.0016-7363.2005.03704002.x
https://doi.org/10.1111/j.0016-7363.2005.03704002.x
https://doi.org/10.1111/j.0016-7363.2005.03704002.x
https://doi.org/10.1111/j.0016-7363.2005.03704002.x
https://doi.org/10.1111/j.0016-7363.2005.03704002.x
https://doi.org/10.1111/j.0016-7363.2005.03704002.x
https://doi.org/10.1111/j.0016-7363.2005.03704002.x
https://doi.org/10.1111/j.0016-7363.2005.03704002.x
https://doi.org/10.1111/j.0016-7363.2005.03704002.x
https://doi.org/10.1111/j.0016-7363.2005.03704002.x
https://doi.org/10.1111/j.0016-7363.2005.03704002.x
https://doi.org/10.1016/0041-1647(75)90030-1
https://doi.org/10.1016/0041-1647(75)90030-1
https://doi.org/10.1016/0041-1647(75)90030-1
https://doi.org/10.1016/0041-1647(75)90030-1
https://doi.org/10.1016/0041-1647(75)90030-1
https://doi.org/10.1016/0041-1647(75)90030-1
https://doi.org/10.1016/0041-1647(75)90030-1
https://doi.org/10.1016/0041-1647(75)90030-1


266 J. Xiang et al.

17. Lima & Associates: Lincoln Travel Demand Model. Lincoln M etropolitan Plan-
ning Organization (2011). https://www.lincoln.ne.gov/files/sharedassets/public/ 
planning/mpo/projects-amp-reports/tdm11.pdf 

18. MirHassani, S.A., Ebrazi, R.: A flexible reformulation of the refueling station loca-
tion problem. Transp. Sci. 47(4), 617–628 (2013)

19. Simchi-Levi, D., Berman, O.: A heuristic algorithm for the traveling salesman 
location problem on networks. Oper. Res. 36(3), 478–484 (1988)

20. Transport Infrastructure Ireland: National Road Network (2013). https://data.gov. 
ie/dataset/national-road-network-2013 

21. Transport Infrastructure Ireland: Traffic Count Data. https://trafficdata.tii.ie/ 
publicmultinodemap.asp 

22. Upchurch, C., Kuby, M., Lim, S.: A model for location of capacitated a lternative-
fuel stations. Geogr. Anal. 41(1), 85–106 (2009)

23. Wang, Y.-W.: An optimal location choice model for recreation-oriented scooter 
recharge stations. Transp. Res. Part D: Transport Environ. 12, 231–237 (2007).
https://doi.org/10.1016/j.trd.2007.02.002 

24. Wang, Y.-W., Lin, C.-C.: Locating multiple types of recharging stations for battery-
powered electric vehicle transport. Transp. Res. Part E: Logist. Transp. Rev. 58,
76–87 (2013)

https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://www.lincoln.ne.gov/files/sharedassets/public/planning/mpo/projects-amp-reports/tdm11.pdf
https://data.gov.ie/dataset/national-road-network-2013
https://data.gov.ie/dataset/national-road-network-2013
https://data.gov.ie/dataset/national-road-network-2013
https://data.gov.ie/dataset/national-road-network-2013
https://data.gov.ie/dataset/national-road-network-2013
https://data.gov.ie/dataset/national-road-network-2013
https://data.gov.ie/dataset/national-road-network-2013
https://data.gov.ie/dataset/national-road-network-2013
https://data.gov.ie/dataset/national-road-network-2013
https://trafficdata.tii.ie/publicmultinodemap.asp
https://trafficdata.tii.ie/publicmultinodemap.asp
https://trafficdata.tii.ie/publicmultinodemap.asp
https://trafficdata.tii.ie/publicmultinodemap.asp
https://trafficdata.tii.ie/publicmultinodemap.asp
https://trafficdata.tii.ie/publicmultinodemap.asp
https://doi.org/10.1016/j.trd.2007.02.002
https://doi.org/10.1016/j.trd.2007.02.002
https://doi.org/10.1016/j.trd.2007.02.002
https://doi.org/10.1016/j.trd.2007.02.002
https://doi.org/10.1016/j.trd.2007.02.002
https://doi.org/10.1016/j.trd.2007.02.002
https://doi.org/10.1016/j.trd.2007.02.002
https://doi.org/10.1016/j.trd.2007.02.002
https://doi.org/10.1016/j.trd.2007.02.002
https://doi.org/10.1016/j.trd.2007.02.002


Enhancing EVRP Benchmark Instances 
with Energy Estimates 

Clíodhna Ní Shé(B) and P aula Carroll

School of Business, University College Dublin, D ublin, D04 V1W8, Ireland
cliodhna.nishe@ucdconnect.ie 

Abstract. The increased use of electric vehicles (EVs) to deliver goods 
in the last mile of the delivery process means that there is a need for 
more realistic energy consumption models. Benchmark instances of the 
electric vehicle routing problem (EVRP) currently use an energy con-
sumption model of one unit of energy for every one unit of distance 
travelled. The underestimation of energy consumption can lead to prob-
lems in the routes, in the life cycle and cost benefit analysis of EVs, and 
their demand and i mpact on the grid. We use a structured approach to
enrich current benchmark instances, following the CRISP-DM data min-
ing framework. This paper provides insights into explanatory variables
that impact energy consumption, and provides a replicable methodology
to create realistic benchmark instances using real world data.

Keywords: Energy Consumption · EVRP · Sustainable Transport ·
Data Enrichment

1 Introduction 

A key environmental challenge is the need for cleaner and more sustainable 
energy sources to minimise emissions and pollution globally. A promising solu-
tion in the transport sector is the electrification of transportation. The Electric 
Vehicle Routing Problem (EVRP) is an extension of the Capacitated Vehicle 
Routing Problem (CVRP), a commonly studied problem in combinatorial opti-
misation. The EVRP consists of determining the optimal set of routes for a given 
number of Electric Vehicles (EVs) to service a given set of customers and their 
demand for goods or services. The objective of the optimisation can vary, for 
example it may be minimising distance, operational cost or energy consump-
tion. Key constraints of the problem include the limited battery range of the 
EVs, the limited number of charging stations available and the capacity of the
vehicles. The goal is to find routes that start and end at the depot, ensure all
customers are visited exactly once, their demand serviced, and that the con-
straints are not violated, while also optimising the chosen objective. The EVRP
is particularly relevant in last mile logistics, which refers to the last stretch of
the supply chain of goods, from the last distribution centre to the recipients’
preferred destination [16]. The underestimation of energy consumption can lead
c The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
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to problems in the routes, and in the life cycle and cost benefit analysis of E Vs
and their demand and impact on the grid.

EVRP Benchmark instances are standardised datasets used to evaluate and 
compare the performance of algorithms. They provide a consistent framework to 
test models and algorithms, allowing for evaluation and benchmarking. Variants 
and extensions of the EVRP focus on different aspects such as time windows,
battery degradation, nonlinear charging or battery swapping [9, 29]. However, 
for the purpose of this study, we will focus on the original variant, the classic 
EVRP. Benchmark instances provide the number of vehicles, the number of 
customers, the number of charging stations (CS), the capacity of the vehicles, the 
energy capacity of the battery, the energy consumption coefficient, the Euclidean 
coordinates of each node (customer, depot and CS) and the demand of each 
customer. The instance network is the set of nodes. Which are a set of locations 
given by two dimensional Euclidean coordinates, along with the edges (roads) 
between each pair of nodes. The weight of each edge is defined as the energy 
consumption along that edge. The current benchmark EVRP instances consider 
the energy consumed to depend solely on the distance travelled and the w eight
of the goods to be delivered. The energy consumption is modelled as a one-to-
one relationship, such that one unit of energy is consumed for every one unit of
distance travelled. This is a simplification that makes the problems easier and
quicker to solve, but this is not a realistic assumption. The research gap is a
lack of test instances that incorporate a realistic energy consumption model. We
address the following research questions:

1. How realistic are current EVRP test instances?
2. How do ambient temperature, vehicle speed and r oad gradient affect EVRP

energy consumption?
3. How can we adapt and enrich current EVRP test instances to take a realistic

energy consumption model into account?

We transform the current instances from 2-dimensional coordinates to 3-
dimensional coordinates and enrich the instances to include ambient temper-
ature, speed and road gradient components. Our methodology is replicable. We 
provide realistic test datasets that can be used to evaluate the performance of 
EVRP models and algorithms, taking energy consumption into account. This
leads to more accurate EV energy consumption, leading to more accurate anal-
ysis of EV routes, EV life cycle and cost benefit analysis and their demand and
impact on the grid.

We create 12 different scenarios for each benchmark instance. We use Ireland 
as a case study, and focus on two locations in Ireland to enrich the test instances. 
We overlay them on a geographical location to project the 2D instances onto 3D 
surface where gradient impact can be explored. The two locations are Cork and
Dublin, as they are the two most populated cities in the Republic of Ireland [26]. 
Dublin is more densely populated than Cork, and Cork is hillier compared to 
Dublin. For both locations, we take four different temperature scenarios, three 
different speed scenarios and we add gradient data. We evaluate the impact that
this adaption has on the weights of the edges. We show that adding the gradient
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has the biggest impact on the edge weight distribution, compared to the other 
explanatory variables, ambient temperature and speed. Our main cont ribution
is the framework to enhance and enrich current benchmark instances.

The remainder of the paper is structured as follows, Sect. 2 provides a brief 
literature review on EVRP energy consumption models. In Sect. 3 we provide a 
comprehensive description of our methodology, how we gathered, p repared and
modelled the data. In Sect. 4 we explore the characteristics of the distribution 
of the energy consumption of the new instances. Section 5 concludes the pap er.

2 Literature Review 

EVs need to be charged at charging stations due to their limited driving ranges
[11]. Decisions about when and where to charge depend on how energy is c on-
sumed along a journey. Erdogan and Miller-Hooks [6] and Schneider et al. [22] 
assume that energy consumption is a linear function of distance travelled. This 
assumption is common in EVRP literature but is not a realistic assumption.
Goeke and Schneider [8] derive a mechanical power energy consumption model as 
a function of the road gradient, the speed of the vehicle and the vehicle parame-
ters. This mechanical power model is used by many, for example [10, 12, 13, 25, 27]. 
We show the description of each parameter in Table 1. The battery energy . bij

consumed between node . i and . j is a function of the power .Pij , the time taken
.tij to travel from node . i to . j, and the efficiency parameters . ϕ and . φ and is seen 
in Eq. (1): 

.bij =
φd · ϕd · Pij · tij if Pij ≥ 0 kW,

φr · ϕr · Pij · tij if Pij < 0 kW.
(1) 

where 

.Pij = (
1
2

· Cd · ρ A v2
ij + m · g · (sin(αij) + Cr · cos(αij))) · vij (2) 

The air density is assumed to be constant for simplicity. Acceleration phases 
are disregarded in this model and the average speed across the distance is used. 
Other explanatory variables that affect the d riving range are the use of air con-
ditioning or heating systems, which, according to Restrepo et al. [20] can reduce 
the original energy available by up to 30%. Low temperatures decrease the bat-
tery efficiency and cause performance losses. Yuksel and Michalek [28]  show  
that, compared to mild climate regions, energy consumption of EVs can rise in 
warmer or lower temperature climates, which results in up to a 41% decrease in
the driving range. Focusing on ambient temperature alone, Rastani et al. [18] 
show that energy consumption in an EVRP can increase by up to 68% due to 
ambient temperature. Rastani et al. [18] derive the ambient temperature coef-
ficient function from empirical data from a study performed on a Nissan Leaf. 
The ambient temperature coefficient function for the Nissan Leaf that depends
on the ambient temperature T (in . 

◦C) is in Eq. (3) 

.hLEAF (T ) =

⎧
⎪⎨

⎪⎩

0.3392 − 0.005238T − 0.0001078T 2 + 1.047 × 10−5T 3+

3.955 × 10−7T 4 − 1.362 × 10−8T 5 − 3.109 × 10−10T 6 if T < 22 ◦C,

0.4211 − 0.01627T + 0.0004229T 2 if T ≥ 22 ◦C.

(3)
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Table 1. Parameters in the Energy C onsumption Model

Notation Value Description Unit Source 

.g 9.81 Gravitational constant m/s2 Demir et al. [4] 

.ρ 1.2041 Air density kg/m3 Demir et al. [4] 

.A 3.467 Frontal surface area m2 Renault [19] 

.m 1622 Curb mass kg Renault [19] 

.Cr 0.01 Coefficient of rolling resistance – Demir et al. [4] 

.Cd 0.7 Coefficient of aerodynamic drag – Demir et al. [4] 

.φd 1.184692 Efficiency parameter (motor mode) – Goeke & Schneider [8] 

.φr 0.846055 Efficiency parameter (generator mode) – Goeke & Schneider [8] 

.ϕd 1.112434 Efficiency parameter (discharging) – Goeke & Schneider [8] 

.ϕr 0.928465 Efficiency parameter (recuperation) – Goeke & Schneider [8] 

.tij – Time to traverse edge .eij s – 

.vij – Velocity on edge .eij m/s – 

.αij – Gradient of edge .eij – – 

They normalise the function as follows:

.AT (T ) =
hLEAF (T )

hLEAF (22 ◦C)
(4) 

The instances that algorithms are currently widely tested on, are Schneider et al.
[22] and Mavrovouniotis et al. [14]. The instances by Schneider et al. (2014) are 
comprised of 56 what they call large instances, each with 100 customers and 21 
recharging stations and 36 small i nstances, each with 5, 10 or 15 customers per
instance. Mavrovouniotis et al. [14] convert classic Capacitated VRP (CVRP) 
instances to EVRP instances by introducing information about the EVs and 
charging stations in the form of EV energy capacity, charging stations and an 
energy consumption coefficient, with i nstances ranging from 29 to 1006 nodes.
There are four sets of instances, generated from the popular CVRP instances
of Christofides and Eilon [2], Christofides et al. [3], and Fisher [7], and the 
more recent instances of Uchua et al. [24]. The instances with more than 150 
customers are considered large instances, in line w ith the literature surrounding
the generation of the instances [2, 3, 7, 24]. 

Our literature review shows the gap between popular EVRP test instances 
and realistic energy consumption. We contribute a realistic energy consump-
tion model by com bining the mechanical power energy model with the ambient
temperature model.

A measure of the distance between distributions is needed to evaluate the 
effect of the energy consumption explanatory variables. The Kullback–Leibler 
(KL) divergence measure quant ifies the relative entropy or difference in informa-
tion represented by two distributions [1]. It is a widely used method for measuring 
the fit of two distributions. A KL div ergence of 0 indicates that the distributions
are very similar, .0 < KL < 0.5 indicates that the distributions are quite close 
with some slight differences, .0.5 < KL < 1 indicates that there are mo derate
differences and .KL > 1 signifies significant differences between the distributions.
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3 Methodology 

We use the CRISP-DM framework to implement a workflow to enrich the current 
EVRP benchmark instances by Mavrovouniotis et al. [14]. This framework breaks 
the workflow into these major phases; business understanding, data understand-
ing, data preparation, modelling, evaluation and deployment [23]. The business 
understanding goals are the research questions outlined in Sect. 1.  We  use  the  
mechanical power model in Eq. (1), along with the ambient temperature coef-
ficient function in Eq. (3) for the energy consumption model. Thus, the final 
energy consumption (EC) function, as a function of the batter energy .bij ,  the  
road gradient .αij , the distance .dij and the ambient temperature . T is: 

.ECij = bij(vij , αij , dij) · AT (T ) (5) 

3.1 Data Understanding 

We collect and analyse the data in Table 1. This data is vehicle parameters, which 
we extracted from the literature and from the Renault website [19]; temperature 
data from Met Éireann (the Irish National Meteorological Service) [15]; speed 
data from the RSA (Irish Road Safety Authority) [21]; and the road elevation 
data, from the Open-Elevation API [17]. 

Vehicle Parameters. For simplicity, we assume that every instance has a fleet 
of the same vehicle. These vehicle parameters can be easily modified, to tailor the 
instances if a sp ecific case study is being carried out. We take the parameters
from Goeke and Schneider [8], in Table 1. We use the Renault Kangoo, that 
is used by An Post (Ireland’s postal service). The parameters for the Renault 
Kangoo are the curb mass 1622 kg, the frontal surface area and the battery
capacity 44 kWh [19]. We will calculate the frontal surface area in Sect. 3.2. 

Temperature. We obtain temperature data from the Met Éireann website, the 
full hourly data series from the Pheonix Park location in Dublin, and from Cork
Airport in Cork [15]. The Pheonix Park weather station has weather data from 
16/08/2003 until 01/02/2025. The Cork airport weather station has data from
01/01/1962 until 01/02/2025.

Speed. We build upon the benchmark instances to incorporate a speed limit to 
each edge (road) in the network. We divide the edges in the network into three 
categories based on the Irish road network: regional roads, local roads and urban
area roads. The speed limits on these roads are 80 km/h, 60 km/h and 50 km/h
respectively [21]. The average speed across edges for the energy consumption 
model depends on the state of the traffic. We assume three scenarios: rush hour, 
daytime and nighttime. The assignment of road categories for each instance will
be discussed in Sect. 3.2.
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Elevation. To transform the instances from 2-dimensions to 3-dimensions, we 
source elevation data from the Open-Elevation Application Programming Inter-
face (API) [17]. We overlay the points in the benchmark instances on real world 
locations. For the small instances, w e use our case study locations Cork and
Dublin. Figure 1 shows the nodes from the instance E-n60-k5-s9 (60 nodes, 5 
EVs and 9 charging stations) and overlaid on Cork City. For the larger instances, 
we choose a point in mainland Europe as Ireland is an island and the instance 
span is larger than the island. We use the elevation data to calculate the net
estimate road gradient between nodes in the instance, as explained in Sect. 3.2. 

Fig. 1. Visualization of the EVRP instance E-n60-k5-s9 overlaid on the g eographic
area of Cork City, Ireland.

3.2 Data Preparation 
Vehicle Parameters. The vehicle parameters are taken from Table 1 or from 
the Renault website, except for the frontal surface area. The frontal surface c an
be computed as frontal Area = Overall Width . × Overall Height. The width and 
height is available on the Renault website [19]. Therefore the frontal area of the 
Renault Kangoo = .1.86 × 1.864 = 3.467m. 

2. 

Temperature. We clean both the Cork and Dublin datasets by removing any 
empty datapoints and cut both datasets to contain the five most recent years of 
temperature data from 2019–2024, to account for the upward trend in tempera-
tures driven by climate change [5]. We define four different average temperature 
scenarios by the time of day (night/day) and the season (Winter, Summer). The
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histograms in Fig. 2 illustrate the differences between Summer and Winter tem-
peratures, as well as between night and day, justifying our scenarios. To obtain 
a temperature value for the four different scenarios, we calculate the mean tem-
perature across 2019–2024 for Dublin and Cork, as shown in Table 2. 

(a) Comparing temperature in Cork 
vs Dublin 

(b) Comparing Night vs Day temperature 
in Cork 

(c) Comparing temperature in Summer 
vs Winter in Cork 

(d) Comparing temperature in Summer vs 
Winter in Dublin 

Fig. 2. Comparison of Temperature distributions for Cork and Dublin in Winter and 
Summer and Night and Day

Speed. As mentioned in Sect. 3.1, we enrich the edges from the benchmark 
instances to include a speed scenario. The edges in the network are assigned a 
road category depending on the distance the furthest endpoint of the edge (road)
is from the centroid, as seen in Algorithm 1. The centroid of the nodes is the 
geometric centre, the average position of all of the nodes. A visual example of
the strategy for a small instance (E-n60-k5-s9) is shown in Fig. 3. The average 
speed across the edges depends on external factors such as traffic, junctions and 
traffic lights. Therefore, we define three typical speed scenarios: rush hour, day
(not rush hour), and night (only traffic lights and junctions slowing the vehicles
down).
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Table 2. Mean temperature for different seasons and times of day in Dublin and Cork
(. ◦C) 

City Season Winter (. ◦C) Summer (. ◦C) 
Dublin Daytime 6.93 17.26 

Night 5.68 13.06 
Cork Daytime 6.86 16.14 

Night 5.89 12.81 

Table 3. Speed scenarios Based on Time Period

Time Period Average Speed (percentage of speed limit)

Rush Hour 50% 
Day (Not Rush Hour) 70% 
Night 90% 

Gradient. Using the elevation data we calculate and store the gradient (ele-
vation change per unit distance) between each . i and . j as follows: . gradientij =
elevationj−elevationi

distanceij
. 

3.3 Modelling 

We transform the weight of each edge in the network to represent the energy
consumed along that edge, using the formula .ECij in Eq. (5). With the adapted 
edge weight value, we can view the problem in terms of energy consumption, as 
opposed to distance travelled. We set up the scenarios in Table 4. The key will 
be used as a label in figures to indicate the corresponding scenario. For example, 
the key C_SDR represents the scenario in Cork during Summer daytime rush
hour.

Algorithm 1. Road Category Assignment
1: Compute centroid . c
2: Compute . rad ← max

i
dist(c, i)/3

3: for each node pair .(i, j) do 
4: . d ← max(dist(c, i), dist(c, j))
5: if .d < rad then 
6: Assign local road 
7: else if .d < 2 · rad then 
8: Assign secondary road 
9: else 

10: Assign regional road 
11: end if
12: end for
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Fig. 3. Visual representation of the road category assignment (instance E-n60-k5-s9). 
The numbers represent customers and charging stations and the red circle is the depot. 
Urban Area Road within the smallest circle, Local Road within the second circle, and
Regional Road within the largest circle. (Color figure online)

3.4 Evaluation 

We evaluate the enriched benchmark instances by comparing the edge weight 
values in the network. We demonstrate the analysis on two benchmark instances, 
a small 60 node instance with 5 EVs and 9 charging stations (E-n60-k5-s9) and 
a large 577 node instance with 30 EVs and 4 charging stations (X-n577-k30-s4), 
for brevity in this paper. We c hose these instances as they represent a small
instance and a large instance, and we found similar results in the rest of the
instances. The distribution of the edge weights for the two original instances,
where .ECij is dependent only on distance travelled are shown in Fig. 4.  For  
the large instance (Fig. 4b), the distribution is more right skewed than for the
small instance (Fig. 4a). The large instances (with the prefix X) derive from the 
CVRP instances created by Uchoa et al. [24]. These Uchoa instances are more 
computationally challenging as CVRP instances, compared t o the other CVRP
instances due to the problem size.

We explore the distribution of the edge weights under varying ambient tem-
perature conditions, keeping the road gradient uniform (0 rad) and the speed sit-
uation uniform (during the day - 70% of the speed limit). We compare the four
Dublin ambient temperature scenarios from Table 2, (Summer, Winter, night 
time and daytime) by plotting the distributions of the energy consumption. 
Comparing these distributions visually, for both the small and large instances,
there is a slight difference in the histograms in Fig. 5. The ambient temperature 
factor of the energy consumption is a multiplicative factor, and therefore will 
only change the magnitude of the distribution, not the shape.
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Table 4. Scenarios based on location, season, time of day , and speed category.

Location Season Time of Da y Speed Category Key 
Cork Summer Day Rush Hour C_SDR 
Cork Summer Day Day C_SDD 
Cork Summer Night Night C_SNN 
Cork Winter Day Rush Hour C_WDR 
Cork Winter Day Day C_WDD 
Cork Winter Night Night C_WNN 
Dublin Summer Day Rush Hour D_SDR 
Dublin Summer Day Day D_SDD 
Dublin Summer Night Night D_SNN 
Dublin Winter Day Rush Hour D_WDR 
Dublin Winter Day Day D_WDD 
Dublin Winter Night Night D_WNN 

(a) Edge weights for small instance 
(E-n60-k5-s9). 

(b) Edge weights for large instance 
(X-n577-k30-s4) 

Fig. 4. Edge weight distributions - distance (km)

We compare the distribution of the edge weights under varying speed con-
ditions, keeping the road gradient uniform (0 rad) and the ambient tempera-
ture uniform (yearly mean temperature of 10.23. 

◦ C). We represent the edge 
weights, which correspond to energy consumption, for both the s mall and the
large instance in the histograms in Fig. 6. We compare the impact of the gradi-
ent by comparing the distribution of edge weights when the explanatory variable 
gradient is incorporated compared to when there is a fixed gradient. We keep 
speed setting (during t he day - 70 % of the speed limit) and the ambient tem-
perature (yearly mean temperature in Dublin of 10.23. 

◦ C) uniform. We show 
the energy adapted edge weights, for both the small and the large instance in
the histograms in Fig. 7. In both figures, for the small instance and the large 
instance, the shape of the distribution of the edges is differ when there is a real
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(a) Edge weights for small instance (E-n60-
k5-s9). 

(b) Edge weights for large instance (X-
n577-k30-s4). 

Fig. 5. Energy Edge weight distributions - V arying temperatures.

world gradient included, compared to a fixed gradient. The edges with nega-
tive energy consumption is due to regenerative braking occurring when the road
gradient is less than 0 rad and the EV is travelling downhill.

(a) Edge weights for small instance (E-n60-
k5-s9). 

(b) Edge weights for large instance (X-
n577-k30-s4). 

Fig. 6. Energy Edge weight distributions - V arying speeds.

3.5 Deployment 

To apply this methodology, we associate each instance with a specific location, 
and corresponding speed and ambient temperature values. Existing benchmark 
instances can be reused across different gradient locations, speeds, and ambient
temperatures.
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(a) Edge weights for small instance (E-n60-
k5-s9). 

(b) Edge weights for large instance (X-
n577-k30-s4) 

Fig. 7. Energy Edge weight distributions - Gradient vs n o Gradient.

4 Results 

In this section, we analyse the results by fitting curves to the original and trans-
formed edge weights for the different scenarios. We compare them both visually 
and using KL to quantify the difference betw een the curves. The KL divergence
measure between the curves for ambient temperature in Fig. 6 and for sp eed
Fig. 5 are .≈0 which confirms that there is no significant e ffect both explanatory
variables.

The curves comparing the gradient cases in both Fig. 7a and Fig. 7b, have 
greater differences than the previous comparisons. In particular, f or the large
instance, the KL value .KL(G||NG) = 7.76 (where G is the distribution with 
the gradient and NG is without the gradient). This is a measure of how much 
information is lost when using distribution NG to approx imate G. A KL value
of 7.76 shows that there is a significant difference between distributions.

As a final example we show the scenarios for the Summer in Dublin from
Table 4, with the key _NG added when we left the gradient as constant (0.5 rad) 
for the two benchmark instances. We plot t he curves that are fit to the histograms
of the different scenarios in Fig. 8 to compare the distributions for both the small 
and large instances. The distributions are visually different for the edge weights 
when road gradient is taken into account. A heat c oloured KL divergence matrix
for each instance is shown for both the small instance in Fig. 9a and the large 
instance in Fig. 9b. These matrices clearly show that the distribution of the 
energy consumption for the edges in the benchmark instances changes when the 
road gradient is taken into account. The KL divergence measures are larger for 
the smaller benchmark instance (E-n60-k5-s9) compared to the larger instance
(X-n577-k30-s4). We have performed this comparison for all of the enriched
Mavrovounotis et al. [14] instances. The results are shown in Table 5. 

The introduction of the road gradient to the energy consumption model trans-
forms the distribution of the edges in a similar way across all of the instances.
The distribution becomes more right skewed, and there is a higher variance.
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(a) Edge weights distributions for small in-
stance (E-n60-k5-s9). 

(b) Edge weights distributions for large in-
stance (X-n577-k30-s4). 

Fig. 8. Comparing Energy Edge w eight distributions.

(a) KL divergence for distributions for 
small instance (E-n60-k5-s9). 

(b) KL divergence for distributions for 
large instance (X-n577-k30-s4). 

Fig. 9. Comparing Energy Edge weight distributions - K L Divergence.

5 Discussion and Conclusion 

This paper provides answers to the three research questions that we introduced in
Sect. 1. We show that the distribution of energy consumption across edge weights 
in the enriched benchmark instances is significantly different than the original 
unmodified benchmark instances. We have shown that the road gradient is the 
explanatory variable that has the greatest effect on the energy consumption. We
have successfully adapted and enriched the current EVRP benchmark instances
with real world data.

A limitation of this study is that the values in Table 3 are based on simplified 
scenarios. Future work will include more realistic speed scenarios derived from 
real world traffic data, and more realistic road category assignment.
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Table 5. KL values for each EVRP instance when comparing the energy consumption 
of the edges without the road gradient and the edges with road gradient.

Instance KL Va lue

X-n147-k7-s4 7.543 
X-n221-k11-s9 7.226 
X-n360-k40-s9 7.082 
X-n469-k26-s10 7.253 
X-n577-k30-s4 7.023 
X-n698-k75-s13 7.571 
X-n759-k98-s10 7.613 
X-n830-k171-s11 7.942 
X-n920-k207-s4 7.691 
X-n1006-k43-s5 7.806 

We provide a replicable framework that can be followed to transform current 
benchmark instances without a realistic energy consumption model, to bench-
mark instances with an energy consumption model that depends on speed, ambi-
ent temperature and road gradient. This enables better estimation of the energy 
consumption of EVs in EVRP problems. The change in edge weights, where the 
weight now represents real-world energy consumption, will impact the current 
solutions to EVRPs and potentially impact life cycle assessment and cost bene-
fit analysis of EVs. This could potentially ha ve impacts on the electrification of
transport and opens up opportunities to explore the intersection of electrifica-
tion of transport and the electricity grid. These enriched benchmark instances
can be used as realistic scenarios for evaluating and comparing the performance
of algorithms and heuristics designed to solve the EVRPs.

These adapted instances can also be used to compare solutions to EVRPs 
in different scenarios, for decision making on when and where to deliver goods. 
Companies may make fleet planning decisions based on the routes they obtain 
from solving the instances for different vehicles, speed scenarios, ambient tem-
perature or gradient. More realistic energy consumption estimation leads to more 
accurate predictions in electrical needs, which is imperative as we move towards 
electrifying transport. These enriched instances are useful for the successful elec-
trification of transport, helping to mitigate climate change.
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Abstract. With the goal of achieving climate neutrality, many European countries 
are accelerating the electrification of the transport sector—one of the major con-
tributors to CO2 emissions. To reduce costs and improve sustainability, they are 
increasingly integrating electric vehicle (EV) fleets into the power grid. However, 
this integration introduces challenges such as increased pressure on grid stabil-
ity, making coordinated charging strategies essential to fully realize the benefits 
of EV deployment. To address the EV fleet charging scheduling problem, this 
study develops a centralized optimization model based on Mixed-Integer Linear 
Programming (MILP), a widely adopted and flexible approach. While existing 
research typically focuses either on cost or emissions, and often within the scope 
of a single-country case study, this paper presents a comparative analysis of both 
cost and sustainability outcomes across five European countries: Croatia, France, 
Germany, Sweden, and Poland. By evaluating smart charging potential under uni-
form operational assumptions, the study highlights how the effectiveness of EV 
integration varies significantly depending on national electricity market struc-
tures and energy mixes. The results provide valuable insights for policymakers, 
energy planners, and fleet operators, demonstrating the importance of tailoring 
EV strategies to specific national contexts. 

Keywords: EV fleet management · EV integration · EV charging optimization · 
demand response · cross-country analysis · cost analysis · sustainability analysis 

1 Introduction 

The global electric vehicle (EV) stock is projected to reach just over one-fourth of all 
vehicles on the road by 2035 [1]. This rapid growth is driven by a combination of sup-
portive government policies, declining battery costs, improved charging infrastructure, 
and a growing consumer preference for sustainable transportation. The European Union 
(EU) plays a central role in driving this transformation. Under the European Green Deal 
and the “Fit for 55” legislative package, the EU aims to reduce greenhouse gas (GHG) 
emissions by at least 55% by 2030 compared to 1990 levels, and achieve climate neu-
trality by 2050 [2]. In the transport sector, the EU has mandated a 100% reduction in
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CO2 emissions from new cars and vans by 2035, effectively signaling the end of internal 
combustion engine vehicle sales across member states [3]. These goals highlight the 
strategic importance of electrification and the decarbonization of both vehicle fleets and 
the electricity generation sector. Additionally, the integration of smart technologies and 
coordinated EV charging strategies can significantly contribute to energy system sustain-
ability and cost savings for consumers, while reducing strain on the grid and supporting 
the integration of renewable energy sources. 

The path to large-scale electrification and decarbonization often begins with small, 
everyday decisions—such as how and when electric vehicles are charged at home. At 
the household level, there is a growing awareness among consumers about the impor-
tance of energy efficiency and cost savings [4–7]. In many countries, consumers benefit 
from dual-tariff electricity pricing, where lower electricity rates apply during nighttime. 
While EV owners may not always be fully aware of this, charging vehicles during off-
peak hours contributes to grid stability and more efficient energy market participation. 
When this concept is scaled up—for example, assuming an owner manages a fleet of 
1 000 EVs—the opportunity becomes even more significant. Moreover, in scenarios in 
which electricity prices fluctuate, e.g. on hourly or even shorter time scale, fleet owners 
can adopt strategic charging plans to minimize costs and maximize economic benefits. 
However, it is important to distinguish between electricity pricing and the carbon inten-
sity of the power supply, as the two do not always align. In some countries, the lowest 
electricity prices coincide with periods of high renewable energy generation, resulting 
in both low costs and low CO2 emissions. In other regions, however, low-cost electricity 
may be driven by fossil-fuel-based baseload generation, leading to higher emissions 
even during low-price periods. As a result, while cost-optimized charging can bring eco-
nomic gains, its environmental impact is highly context-dependent. Fleet owners aiming 
to reduce both costs and carbon emissions must therefore consider the specific electricity 
market dynamics and generation mix of their region. 

Besides pricing and emissions, the EV optimization framework and the choice of 
optimization method significantly influence both cost-effectiveness and environmen-
tal outcomes of electric vehicle integration into the energy system. Various optimiza-
tion frameworks have been proposed to manage electric vehicle (EV) charging, each 
with different levels of control and scalability. These include centralized models, in 
which a single controller optimizes charging for the entire fleet [8–11]; decentralized 
approaches, which distribute control among individual units or local agents [12–16] and 
hybrid methods, which combine elements of both centralized and decentralized control 
to enable multi-stage or hierarchical coordination [17–21]. This study adopts a central-
ized optimization framework, which is well-suited for small- to medium-scale systems. 
It provides globally optimal solutions with low implementation complexity, making it 
an effective and practical choice for comparative analysis across electricity markets. 

Once an optimization framework is selected, an appropriate optimization method is 
required to determine the most efficient charging strategy. In this study, Mixed-Integer 
Linear Programming (MILP) is selected due to its flexibility and proven effectiveness in 
EV fleet scheduling. While other techniques such as Linear Programming (LP), Model 
Predictive Control (MPC), and heuristic methods exist, MILP offers a balance between 
modeling precision and computational feasibility, making it ideal for the comparative,
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multi-country analysis conducted in this paper. MILP is particularly well-suited for cen-
tralized models, as it allows simultaneous handling of continuous variables (e.g., energy 
delivered per interval) and binary decisions (e.g., charging ON/OFF status) [8, 22–24]. 
The optimization is performed over a one-day horizon using a 15-min time resolution, 
enabling detailed modeling of charging behavior and energy market dynamics. 

Despite the growing importance of sustainability, most existing studies prioritize total 
cost minimization as the primary objective. As a result, CO2 emissions are frequently 
overlooked or treated as a secondary objective. This study aims to emphasize that a 
single-objective, cost-focused approach may not yield the best results. To address this, 
and to highlight the potential need for multi-objective optimization frameworks that 
balance both cost and sustainability considerations, a two-step methodological approach 
is adopted. First, a cost-only optimization is performed to determine charging schedules 
with the lowest daily cost. In the second step, the resulting CO2 emissions are analyzed 
to evaluate the environmental consequences of the cost-driven decisions. 

Another research gap in the literature is the predominant focus on country-specific 
studies, which reduces the generalizability of findings. Given that each energy mar-
ket has distinct characteristics—such as energy mix, regulatory frameworks, and price 
dynamics—results from one national context may not be directly applicable to others. 
This study addresses that gap by evaluating the potential cost savings and sustainability 
impact of EV charging optimization across five European countries—Croatia, France, 
Germany, Poland, and Sweden—under identical operational assumptions. The coun-
tries were selected based on their distinct energy profiles: Croatia, a small country with 
a mixed energy supply and dependence on imports; Germany, with significant share of 
renewables but continued reliance on fossil fuels; France, dominated by nuclear energy; 
Poland, with one of the highest carbon intensities in electricity generation among Euro-
pean countries; and Sweden, featuring one of the cleanest electricity mixes in Europe 
(Fig. 1). 
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Fig. 1. Electricity generation from fossil fuels, nuclear and renewables [25] and associated carbon 
intensity in selected European countries for 2023 [26]
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The results highlight how differences in energy market structures and carbon inten-
sities influence the feasibility and sustainability of EV fleet integration across Europe. 
Moreover, the observed mismatch between cost savings and emission reductions high-
lights the need for future research to incorporate both cost efficiency and sustainability 
directly into the optimization process. 

The structure of the paper is as follows: Sect. 2 presents the input data used for the 
optimization algorithm, along with a detailed description of the MILP formulation. It also 
introduces the two analyzed scenarios: a baseline scenario, representing unoptimized or 
typical charging behavior, and an optimal scenario, generated by the proposed optimiza-
tion model. Section 3 provides a comparative analysis of both scenarios, focusing on 
charging costs and sustainability metrics. The analysis is conducted both within each 
country—comparing baseline and optimal strategies—and across countries, highlight-
ing how differences in electricity markets, particularly price volatility and grid carbon 
intensity, influence the results. Finally, Sect. 4 summarizes the main conclusions and 
outlines directions for future research. 

Indices: 

c ∈ C = {1, 2,  .  .  .  ,Nev} index of electric vehicles 
t ∈ T = {1, 2,  .  .  .  ,Nt} index of time intervals 
pt electricity price at time interval t 
ac,t ∈ {0, 1} availability of vehicle c for charging at time t (1 if present, 0 

if away) 
ec,t energy consumed due to driving by vehicle c during interval t 
SOCinitial,c initial battery state of charge for vehicle c 
SOCtarget,c required final SOC for vehicle c 
SOCmin minimum allowable SOC 
SOCmax battery capacity (maximum SOC) 
Nchargers number of available charging stations 
xc,t ∈ R ≥ 0 energy charged to vehicle c at time t (in kWh) 
yc,t ∈ {0, 1} binary variable; 1 if vehicle c is charging at time t, 0 otherwise 
SOCc,t ∈ [0, SOCmax] SOC for vehicle c at the end of time t 

2 Case Study Overview 

Addressing the challenges associated with electric vehicle (EV) charging requires con-
sideration of two main perspectives: the supply side, representing the power system, 
and the demand side, which encompasses the charging infrastructure. The supply side 
involves the energy market, where electricity is traded, and participants may engage in 
capacity markets or provide ancillary services. On the demand side, this study focuses 
specifically on charging stations, which shape electricity consumption patterns and offer 
opportunities for cost optimization. While the demand side can also include compo-
nents such as EV users, on-site renewable generation, and energy storage systems, these 
are excluded from the presented analysis. Instead, this study focuses on charging sta-
tions, examining how cross-country variations in electricity prices and carbon intensity 
influence financial and environmental outcomes. 

In this study, a two-step methodological approach is developed: cost optimization in 
the first step, followed by a post-optimization sustainability analysis. In the first step, cost
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optimization is performed using a centralized control approach, where a single control 
entity collects input data and simultaneously optimizes the charging of an entire EV 
fleet, consisting of 10 vehicles and 2 chargers, using Mixed-Integer Linear Programming 
(MILP) for real-time optimization. The developed optimization algorithm relies on three 
key inputs: electricity prices (varies in time), driving schedule predictions (varies in 
time), and EV technical characteristics. The output of the model is an optimal charging 
schedule that minimizes total charging costs over a one-day planning horizon, with 15-
min time intervals. In the second step, the resulting charging schedules, together with 
hourly carbon intensity values, serve as inputs for the post-optimization sustainability 
analysis. This analysis evaluates the environmental impact of the cost-optimized charging 
schedules. Figure 2 shows a schematic overview of the system, illustrating the connection 
between the real-world EV charging infrastructure and the optimization algorithm. It 
highlights key components on both the supply side (energy sources and the grid) and 
demand side (charging stations and EV fleet), as well as the data exchange between 
the physical environment and the centralized optimization framework. In addition, the 
flowchart illustrating this two-step methodology is presented in Fig. 3. 

Fig. 2. Schematic overview of the electric vehicle (EV) fleet charging system 

2.1 Optimization Inputs and Constraints 

The optimal scheduling of electric vehicle (EV) charging represents a critical component 
in minimizing operational costs while ensuring grid stability and vehicle readiness. 
However, the problem is complex due to the interplay of technical constraints, user 
behavior, and dynamic electricity pricing. This section presents the input data used in 
the development of the centralized charging optimization algorithm, which is formulated 
as a Mixed-Integer Linear Program (MILP). 

The algorithm incorporates day-ahead electricity prices for 5 countries: France, Ger-
many, Poland, Sweden, from NordPool [27], and Croatia from the CROPEX [28]. For 
the purposes of this study, data from April 23, 2025, are used as a representative example, 
as shown in Fig. 4. This date was selected randomly to illustrate the modeling approach 
in a single-day case study. These prices are integrated into the cost optimization model 
as a time-series input that varies on an hourly basis. In addition, the most important 
input for the sustainability analysis is the hourly carbon intensity values, which reflect 
the time-varying CO2 emissions per unit of electricity generated. Figure 5 illustrates the
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Fig. 3. Overview of the two-step methodological framework: cost optimization followed by post-
optimization sustainability analysis 

hourly variations in carbon intensity on the same date [26], highlighting the differences 
in grid emission profiles across the selected countries. 
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Fig. 4. Day-ahead electricity prices for selected countries on 23rd April 2025 

The technical specifications of the EV fleet and charging infrastructure define the 
physical constraints of the cost optimization model. These include parameters such as 
battery capacity, minimum and target state of charge (SOC), energy consumption, and 
charging availability. Table 1 summarizes the key technical inputs used for simulation. 

Among all input categories, driving behavior introduces the greatest uncertainty, sig-
nificantly affecting the availability of EVs for charging. To address this, the algorithm 
incorporates flexible, statistically generated driving schedules using the Monte Carlo 
method instead of relying on static, predefined patterns. For each EV, the maximum
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Fig. 5. Hourly carbon intensities for selected countries on 23rd April 2025 

Table 1. Technical parameters used in the EV charging optimization model 

Input Value 

Battery capacity [kWh] 60 

Minimum state-of-charge (SOC) [%] 20 

Target SOC [%] 100 

Average consumption [Wh/km] 180 

Average speed [km/h] 50 

Number of cars [-] 10 

Number of chargers [-] 2 

Charging power [kW] unlimited

number of possible driving intervals per day was first calculated based on its battery 
capacity and energy consumption characteristics, ensuring that each vehicle could com-
plete a full day of operation without requiring mid-day charging. These driving intervals 
were then randomly distributed across the day, except for a fixed non-driving period 
from 9:00 PM to 12:00 AM the following day, during which all EVs were assumed to 
be parked and available for charging. This stochastic method enables the simulation of 
diverse and dynamic usage profiles across the fleet, better capturing real-world variabil-
ity in driving behavior. The driving schedule profiles for 10 EVs over a 24-h period are 
presented in Fig. 6. 
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Fig. 6. Driving schedule profiles of 10 EVs over a 24-h period 

2.2 Optimization Method 

This section presents the mathematical formulation of the charging optimization prob-
lem. The objective is to determine an optimal charging schedule for a fleet of EVs that 
minimizes total electricity costs while satisfying system constraints such as charger 
availability, battery limitations, and vehicle availability. 

The problem is formulated as a Mixed-Integer Linear Program (MILP), with contin-
uous variables representing charging amounts and binary variables indicating whether a 
vehicle is charging at a given time step. In this analysis, the time horizon is discretized into 
15-min intervals, providing sufficient resolution for capturing variations in electricity 
prices and vehicle usage patterns. 

Objective Function. The primary objective is to minimize the total cost of charging all 
vehicles over the time horizon: 

min 
c∈C t∈T 

xc,t • pt (1)

Simultaneous Charging Constraint. At any given time, the number of vehicles 
charging must not exceed the number of available chargers: 

c∈C 
yc,t ≤ Nchargers, ∀t ∈ T (2)

Vehicle Availability Constraint. Vehicles can only be charged if they are present at 
the charging location: 

yc,t ≤ ac,t, ∀c ∈ C, ∀t ∈ T (3)

Charging Logic. Energy can only be delivered to a vehicle if it is actively charging: 

xc,t ≤ SOCmax • yc,t, ∀c, t (4)



Economic and Environmental Benefits of Centralized MILP Optimization 291

Battery Dynamics Calculation. Each vehicle’s battery SOC is updated based on the 
previous SOC, energy consumed during driving, and energy received from charging: 

SOCc,t = SOCc,t−1 − ec,t + exc,t, ∀c , t (5)

The initial condition is given by: 

SOCc,0 = SOCinitital,c, ∀c (6)

Each vehicle must reach or exceed its target SOC by the end of the planning horizon: 

SOCc,H ≥ SOCtarget,c, ∀c (7)

SOC Bounds. The SOC must always remain within safety and capacity limits: 

SOCmin ≤ SOCc,t ≤ SOCmax, ∀c, t (8)

2.3 Scenario Definition for Comparative Analysis 

To evaluate the potential savings within each country, two scenarios are developed: a 
baseline case and an optimal case. The baseline scenario represents a business-as-usual 
approach, where all vehicles begin charging at the end of the day—when their state of 
charge (SOC) is at its lowest. In contrast, the optimal case reflects the outcome of a cen-
tralized model that utilizes a Mixed-Integer Linear Programming (MILP) optimization 
method, aiming to minimize the total charging cost. Both scenarios are based on identi-
cal input data, including the availability of 10 electric vehicles (EVs) and two chargers, 
allowing for a consistent comparison of cost efficiency and sustainability. 

3 Results and Discussion 

3.1 Economic Performance: Cost Comparison 

This section presents the results of potential cost savings within each country and com-
pares outcomes across different national electricity markets. The baseline case reflects 
a business-as-usual charging strategy, where 10 EVs are charged using 2 chargers only 
when their SOC reaches a critical level. In this study, the critical level is assumed to occur 
at the end of the day, and this charging behavior is predefined based on periods when 
the vehicles are not in use. Since this scenario does not utilize optimization, it typically 
results in higher total charging costs. The total baseline charging cost is calculated for all 
selected countries, providing a benchmark for comparison. In addition, Fig. 7 illustrates 
the SOC trajectories of each EV for Croatia as a representative example of the baseline 
case.
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Fig. 7. Variations in daily SOC for the baseline case for Croatia 

In contrast to the baseline, the optimal case represents the best-case scenario, where 
an optimization algorithm is used to minimize the total daily charging cost. Vehicles 
are still required to reach their target SOC by the end of the day, but the optimization 
model identifies more cost-effective time slots for charging—shifting charging activity 
to periods with the lowest electricity prices. Figure 8 illustrates the results for Croatia 
under the optimal charging scenario, showing the adjusted SOC trajectories of all EVs. 
Compared to the baseline case, this strategy achieves a 28% reduction in total charging 
costs. 

Fig. 8. Variations in daily SOC for the optimal case for Croatia
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Figure 9 presents the daily charging costs for 10 EVs and 2 available chargers under 
both the baseline and optimal scenarios for all analyzed countries. As the results suggest, 
the variations in daily charging costs between countries are significant in both the baseline 
and optimal scenarios, reflecting differences in electricity prices and market structures. 
Germany and Poland report the highest total costs in both scenarios, while Sweden, 
benefiting from a more stable electricity market, shows the lowest total baseline cost— 
as well as the smallest percentage reduction in the optimal scenario. Cost savings range 
from 28% (Croatia) to 62% (France). Notably, even a 28% reduction is substantial— 
when scaled to large EV fleets, such savings can result in meaningful economic benefits, 
especially considering that improvements as small as 5% can be impactful at scale. It 
is important to note that this analysis is based on a specific day, and results may vary 
depending on daily electricity price fluctuations and driving patterns. 
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Fig. 9. Daily charging cost for the baseline and optimal scenarios across selected countries 

3.2 Environmental Impact: CO2 Emission and Sustainability 

The previous section demonstrated the cost-saving potential achievable through real-time 
optimization of electric vehicle (EV) charging. This section shifts the focus to environ-
mental impact, aiming to explore how minimizing daily charging costs—as defined by 
the objective function—and the resulting charging patterns influence sustainability out-
comes, particularly in terms of carbon emissions, across different countries. To provide 
a reference point, we consider the same EV fleet characteristics—each vehicle having a 
60 kWh battery and an average consumption of 180 Wh/km. Under these conditions, a 
single charge allows for a daily driving distance of approximately 333 km per vehicle, 
resulting in a total fleet distance of 3 333 km per day. If this same distance were cov-
ered by conventional internal combustion engine (ICE) vehicles, assuming an average 
emission factor of 170 g CO2/km [29], the fleet would emit approximately 500 kg of 
CO2 daily. This value serves as a worst-case baseline for emissions, enabling a more 
meaningful comparison of EV fleet sustainability across different electricity generation 
mixes. Figure 10 illustrates the resulting daily CO2 emissions across selected countries, 
comparing both the baseline and the optimized charging scenarios.
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Fig. 10. Daily CO2 emissions for baseline and optimal scenarios across selected countries 

The results indicate that the implementation of EVs significantly reduces daily CO2 
emissions compared to internal combustion engine (ICE) vehicles. In most countries, 
further reductions are achieved through optimized charging strategies that align with 
periods of lower carbon intensity. However, there are some outliers—for instance, in the 
case of Croatia, the optimized charging scenario actually results in higher CO2 emissions 
due to the specific characteristics of the local electricity generation mix. These national 
variations highlight that cost-effective charging does not always lead to more sustainable 
outcomes. Therefore, it is essential to incorporate both economic and environmental 
considerations into the early stages of EV fleet planning to ensure that charging strategies 
support both cost efficiency and long-term sustainability goals. 

3.3 Discussion 

In this section, a comparative analysis of cost savings and sustainability outcomes is 
presented for each country. The following Fig. 11 illustrates both the charging cost 
savings and the change in CO2 emissions achieved in the optimal case, relative to the 
baseline scenario. Electricity price trends often correlate with carbon intensity, meaning 
that lower electricity prices—typically driven by increased renewable energy genera-
tion—are generally associated with lower CO2 emissions. This relationship is observed 
in countries like France, Germany, Poland, and Sweden. However, Croatia exhibits the 
opposite pattern, with optimized charging leading to an increase in CO2 emissions. This 
is largely due to the fact that Croatia is not yet energy independent and must rely on 
electricity imports. The rise in emissions can be attributed to imports from neighbouring 
countries such as Bosnia and Herzegovina and Serbia, where coal remains a dominant 
energy source [26]. It is important to emphasize that these results are based on a single 
reference day, and the situation may vary depending on the daily electricity mix and 
market conditions.
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Fig. 11. Relative change in charging cost and CO2 emissions across selected countries 

France achieves the greatest cost reduction (−62%) and a substantial decrease in 
emissions (−43%). Its electricity system is primarily based on nuclear power. With 
policies targeting a phase-out of fossil-fuel vehicles by 2035 and strong investments in 
EV infrastructure, France is well-positioned to scale electrification in a sustainable way. 

Germany’s energy mix still includes a significant share, nearly 50%, from fossil 
sources, yet it also benefits from a strong presence of renewables, particularly solar 
and wind. The results of this study show a 29% reduction in charging costs and a 31% 
decrease in CO2 emissions, indicating that EV integration can already deliver meaningful 
economic and environmental benefits under current conditions. As Germany advances 
toward its goal of phasing out fossil fuels, these benefits are expected to become even 
more substantial. 

Sweden, on the other hand, combines low charging costs with minimal emissions, 
as a result of its electricity mix dominated by hydro and nuclear power. The country 
leads in EV adoption and plans to ban fossil-fuel vehicle sales by 2030, making it a 
frontrunner in aligning economic and environmental objectives. 

Poland demonstrates notable cost advantages through optimized charging; however, 
its electricity system remains heavily reliant on coal. As a result, smart EV charging 
strategies, although economically beneficial, lead to the highest CO2 emissions among 
the analyzed countries. Nevertheless, these emissions are still approximately 24% lower 
than those generated by a comparable fleet of internal combustion engine (ICE) vehi-
cles, highlighting that even in coal-dependent systems, electrification offers meaning-
ful environmental benefits. While coal remains the dominant source of emissions in 
Poland, ongoing national efforts to reduce coal dependence suggest that the sustainabil-
ity potential of EV fleets will increase over time. This underscores the dual importance 
of both electrification and grid decarbonization, particularly in countries transitioning 
from fossil-heavy power systems. 

Altogether, these examples emphasize that the sustainability of EV fleet implemen-
tation is deeply dependent on the national energy context. While optimization strategies 
can effectively reduce costs, their environmental impact is ultimately determined by the
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cleanliness of the electricity supply. Incorporating CO2 emissions minimization along-
side cost minimization in the objective function would be a logical next step to balance 
both goals. Although this approach may reduce the extent of cost savings compared to a 
purely cost-focused strategy, it would lead to lower overall carbon emissions—without 
necessarily achieving the absolute minimum in either objective. 

4 Conclusion 

In this study, the cost and sustainability outcomes of electric vehicle (EV) charging were 
analyzed for a small-scale fleet of 10 EVs and 2 chargers. A two-step methodological 
framework was applied: first, cost optimization based on Mixed-Integer Linear Program-
ming (MILP) was performed, followed by a post-optimization sustainability analysis. 
The framework was applied under consistent vehicle characteristics and statistically 
generated driving schedules, with variations in day-ahead electricity prices and carbon 
intensities across five European countries: Croatia, France, Germany, Poland, and Swe-
den. The objective was to evaluate and compare the potential for EV fleet optimization 
within and across these countries. 

The results highlight that when assessing EV charging strategies, both cost effi-
ciency and sustainability must be considered simultaneously. While centralized opti-
mization consistently led to cost reductions (28%–62%), the environmental outcomes 
varied depending on each country’s electricity mix. In Germany, France, Poland, and 
Sweden, lower costs aligned with CO2 emission reductions (4%–43%). However, Croa-
tia experienced an increase in emissions, largely due to its reliance on electricity imports 
from neighboring coal-based systems. These findings highlight that while financial sav-
ings are achievable across different contexts, environmental benefits depend strongly on 
the cleanliness of the electricity supply at the time of use. 

This type of cross-market analysis provides valuable insights for strategic decision-
making, especially when determining which electricity markets or regions offer the most 
favorable conditions for fleet deployment and smart charging solutions. This work lays a 
solid foundation for future algorithm development. Future work will expand the current 
one-day case study into a multi-day analysis to better capture the temporal variability 
in electricity prices and carbon intensity. Additionally, a multi-objective optimization 
approach will be developed to incorporate both cost and sustainability objectives directly 
into the MILP formulation. This will enable a more comprehensive assessment of trade-
offs and allow for comparison with the current cost-driven optimization results. Further 
enhancements will include the integration of electricity price forecasting and driving 
schedule prediction models, enabling greater adaptability and real-time applicability of 
the optimization framework across diverse energy markets. 

This research has been supported and funded by Verne Croatia, a company focused 
on the development of technologies for autonomous vehicles. The authors gratefully 
acknowledge their support. 
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Abstract. Large-scale electric-vehicle (EV) uptake is challenging the power grid 
due to a lack of sufficient hosting capacity. Most smart-charging studies still treat 
EVs as stationary loads in one location and ignore their mobility. This work closes 
that gap by evaluating an EV-based virtual electricity network (EVEN) that lets 
vehicles charge at one feeder and discharge at another. We formulate a com-
prehensive framework that combines inter-network energy-delivery optimization, 
stochastic time-series hosting capacity analysis, and battery-degradation assess-
ment. The approach is tested on two real-world distribution systems: a voltage-
constrained 50-bus rural residential network and a capacity-rich 76-bus indus-
trial network. Simulation results reveal that shifting only 10% of the evening 
demand from the rural to industrial network cuts the rural undervoltage index by 
roughly 80% and weekly violation counts by 65%, while adding no more than two 
minor violations upstream. At this level, average yearly battery-cycling degrada-
tion rises modestly from 0.4% to 0.8%. The study thus demonstrates EVEN as a 
cost-effective, scalable alternative to physical reinforcement and provides the first 
integrated assessment linking network-level benefits with battery-health impacts. 

Keywords: Electric Vehicle · Hosting Capacity · E-mobility · Grid Integration 

1 Introduction 

Electric vehicles (EVs) are promising solutions for the decarbonization of transport 
sector. With the target of transport electrifications in many countries and regions, the 
past decades have witnessed dramatic increase of EV deployment. Recent reports such 
as the IEA Global EV Outlook 2024 illustrates the exponential market growth and the 
strategic role EVs are expected to play in future energy systems [1]. The increasing 
number of EVs, which need to be connected and charged in the power grid, is creating 
significant challenges to many of distribution networks today. This is because most of the 
existing distribution networks were designed several decades ago, without considering 
the increasing EV charging loads and other new electric loads such as heat pumps [2].
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As a result, there is a lack of sufficient hosting capacity in many distribution networks. 
Hosting capacity is the maximum amount of electricity consumption or generation that 
can be integrated into the power system, while still maintaining its performance within 
acceptable limits [3]. Due to a lack of sufficient hosting capacity, problems such as line 
overloads, transformer overloads, power quality deterioration, and voltage drop may 
occur [4]. 

To enhance the grid hosting capacity, existing studies have developed different mea-
sures. The most straightforward approach is to reinforce or reconfigure the grid. However, 
this approach is expensive and it typically takes long time. Other measures include using 
on-load tap charging transformers, reactive power control, energy storage or demand 
response [5, 6]. Among these methods, a promising solution is demand response and 
smart charging of EVs. For instance, in [2], a smart EV charging approach is developed 
to enhance the hosting capacity for EVs. In [6], different EV charging strategies are stud-
ied and compared from the hosting capacity perspective, and it was found that spreading 
out EV charging loads during the connection period can benefit the grid most. In [7]  a  
coordinated charging control method is developed for EV aggregators to optimize the 
charging loads of an EV fleet. The developed control effectively improved the hosting 
capacity by 15% for a 40% EV penetration lev el.

Despite notable progress in smart EV charging, several limitations remain. Many 
studies rely on overly simplified grid models, overlooking battery-wear effects and the 
intricate mobility patterns that arise in real-world operation. Moreover, research typically 
treats EV integration as a single-location problem, ignoring the vehicles’ potential as 
mobile storage assets. In practice, an EV can charge at one node and later discharge 
at another, thereby forming an EV-based virtual electricity network (EVEN). Although 
previous work has explored the benefits of EVEN for local energy balancing and cost 
reduction [8–10], its contribution to distribution-grid hosting capacity is still unclear. 

To bridge the research gap, the present study develops a comprehensive framework 
that combines inter-network energy-delivery optimization, stochastic time-series host-
ing capacity analysis, and battery-degradation assessment. Two real-world distribution 
feeders serve as case studies. We quantify how EVEN affects voltage violations in 
both networks and evaluate the associated cycling degradation of the EV batteries. To 
our knowledge, this is one of the first investigations into the impact of EV-mediated 
energy transfer on hosting capacity. The findings advance the theoretical understanding 
of EVEN and provide actionable guidance for grid operators seeking to exploit EVs as 
dynamic, mobile energy resources. 

2 Methodology 

This section introduces the methodology developed for the EVEN solution. First, the EV 
charging/discharging profiles are optimized. Then, the EV charging/discharging profiles 
are assigned to specific buses in each distribution network based on the EVs’ connection 
period. Then the grid performance is analyzed using power flow analysis in a stochastic 
way. After the power flow simulation, the voltage violation is estimated, and the battery 
cycling degradation is calculated. Details about each step are introduced below.
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2.1 Control of EVs for Electricity Delivery in the EVEN Solution 

The EVEN solution leverages the mobile storage of EV batteries to actively deliver 
electricity between different places. Within this study, the aim is to deliver electricity 
from areas with strong distribution network to areas with weak distribution networks. In 
the scope of this study, ‘strong’ and ‘week’ are defined based on the hosting capacity of 
the network. This study considers EVs commuting between two distribution networks: a 
rural distribution network and an industrial distribution network. The optimization is to 
minimize the aggregated peak loads in the bus connection, considering the base loads. 
It is depicted by Eq. (1). 

J = minimize max eex,t , (1)

eex,t (kW ) is the hourly aggregated load on a bus, as calculated by Eq. (2), 

eex,t = eb d ,t + ut , (2)

eb d ,t (kW ) is the base load on the bus, and ut (kW ) is the EV charging/discharging rate. 
The EV charging/discharging rates should meet the following constraints: 

ulm,disc < ut < ulm,char . (3)

0 ≤ SOC0 × CAP + utj + utj+1 +  · · ·  +  utj+i × τ ≤ CAP where i = 1, 2, . . . , nk,

(4)

ulm,char (kW ) and ulm,disc (kW ) are the maximum charging rate and discharging rate, 
respectively. SOC0 is the initial State-of-Charge when arriving at a bus, and CAP (kWh) 
is the EV battery capacity. τ (hour) is 1 h. Furthermore, the total amount of electricity 
charged in each session is calculated by Eq. (5). 

utk + utk+1 + .  .  .  + utk+nk × τ = CAP × 1 − SOC 0 , instrongnetwork
β · Eload , inweaknetwork

(5)

In the strong network, EV is always charged to full capacity. While in the weak 
network, it will discharge electricity. The amount to be discharged is defined by a coeffi-
cient β, which defines the load reduction percentage. A larger value means using EVs to 
deliver more electricity to the weak distribution network. Eload (kWh) is the total base 
electricity loads in the connection period. 

The optimization is conducted at hourly interval. The optimization horizon is the 
connection period of EV in each charging session. 

2.2 Hosting Capacity Analysis 

This study adopts a stochastic time-series approach for evaluating the hosting capacity 
of the distribution networks. A winter week with high average loads is selected for 
analysis. Considering uncertainty in the EV model and location of EV connection in
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each network, Monte Carlo (MC) simulation is conducted to evaluate the power grid 
performances in a stochastic framework. 

For this study, AC power flow analysis is performed to evaluate the distribution net-
work performance. The MATPOWER tool is utilized to run the power flow simulations. 
The power flow analysis is based on the well-known Newton-Raphson method, which 
calculates steady-state bus voltages and line flows by iteratively solving the complex 
power mismatch equations [11, 12]. 

There are many performance indicators for assessing the power grid performances. 
For instance, in [6], three performance indices, including voltage violation, cable over-
loading, and transformer overloading are considered. This study takes a similar approach 
and evaluates the voltage profiles for violations. Note that the current and thermal over-
loading are not considered as both case power grid models have large redundancy in 
these aspects. In this study, voltage violation is considered as the performance indicator. 
Considering the network work faces critical challenges with large load integration, only 
undervoltage problem is considered. 0.95 p.u. is set as a threshold as in [6], and once the 
voltage of a bus goes below 0.95 p.u., it is considered as a violation. Both the number 
of violations and the amount of voltage violations (i.e., how far it is from the threshold) 
are estimated. 

2.3 Modelling of Battery Cycling Degradation 

The cycling degradation of EV battery is evaluated using the Rainflow Counting algo-
rithm, which was originally formulated for fatigue analysis. The Rainflow Counting 
algorithm converts the depth-of-discharge (DoD) time-series data into an equivalent set 
of stress cycles [13]. Then the DoD ranges and associated cycles can feed empirical life 
models for assessing degradation. The model from [14] is used. It is shown by Eq. (6). a 
and b are coefficients, which are different for different types of battery chemistry. They 
are taken from [15]. 

DCL = m 

k=1 

Cycleof Rk 

a × (Rk )
b 

(6)

A limitation of this study is the consideration of cycling degradation only. Future 
work will look into the calendar degradation and make more comprehensive evaluation 
of the battery performance. 

3 Case Studies and Results 

This section first introduces the case systems. Then, the grid performance improvements 
via the EVEN solution are presented and discussed, followed by the battery degradation 
analysis results. 

3.1 Description of the Systems Considered 

To guarantee that the study reflects practical operating conditions, we employ two mea-
sured Norwegian medium-voltage feeders: (i) a 50-bus rural residential network [16] and
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(ii) a 76-bus industrial distribution network [17]. The rural feeder is purposely chosen 
because it already exhibits multiple off-nominal voltage nodes in the base case, provid-
ing a stringent benchmark for additional EV penetration. A representative winter week 
is simulated; Fig. 1 plots the active-power demand at every load bus for both systems. In 
the residential feeder, several nodes carry almost constant demand while others follow 
the typical evening-peaking household profile. Conversely, the industrial feeder is char-
acterized by pronounced daytime plateaus and nocturnal troughs, and its mean demand 
per bus is substantially higher than that of the rural system, indicating greater unused 
capacity for power delivery in off-peak hours. 

(a) Hourly load profiles in the rural residential network (b) Hourly load profiles in the industrial network 

Fig. 1. Hourly load profiles on each bus in the residential network and industrial network 

A set of EV models in the market are considered, with capacities ranging from 53 
kWh to 77 kWh. The total number of EVs is 21, equaling the total number of buses with 
loads in the residential network. The mobility pattern of vehicles is taken from statistical 
survey. Each MC run proceeds as follows. First, the vehicles are randomly assigned to 
connection nodes in both test networks to reflect stochastic usage behaviour. Secondly, 
individual charging and discharging schedules are optimized using the method described 
in Sect. 2.1. The resulting power profiles are then added on the native bus demands and 
an AC power-flow calculation is executed. This sequence is repeated 200 times to build 
a statistically robust ensemble that captures uncertainty in EV mobility and location. For 
the residential feeder five demand-reduction objectives, expressed by the dimensionless 
index β in (5), are investigated: β = 0.10, 0.20, 0.30, 0.40 and 0.50. Here β = 0.10 
requires the EV fleet connected to a given bus to offset 10% of the baseline electric 
loads during its connection period, while higher β values representing more electricity 
delivered via EVs. The total simulation time for each case of β is around 1h on an Intel 
® Core™ i7-1355U computer.

3.2 Grid Performance Improvement via EVEN Solution 

Figure 2 compares the network-wide voltage-violation index under the five scenarios. 
Subplots (a) and (b) display violin plots built from 200 MC runs for the residential and 
industrial feeders, respectively; the dashed line denotes the no-EV benchmark. In the 
residential system a mere 10% load reduction (β = 0.10) cuts the mean violation index
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from around 2.6 to 0.5—an 80% mitigation—whereas pushing β beyond 0.10 yields 
only marginal additional benefit. The industrial feeder, which must supply the exported 
energy, shows a monotonic increase in violations as β rises, yet the absolute values 
remain below 3 × 10-3, i.e., orders of magnitude lower than in the residential case and 
therefore operationally negligible.

Subplots (c) and (d) report the aggregate count of voltage-limit breaches observed in 
each MC realization for the residential and industrial feeders, respectively. In the rural 
residential network the introduction of EV electricity delivery for 10% load reduction (β 
= 0.10) cuts the mean violation count from roughly 460 to 168 times per week—a 64% 
improvement. Beyond β = 0.20, further load reduction yields only marginal additional 
gains, indicating a saturation of the hosting-capacity benefit. In contrast, the industrial 
feeder—initially free of violations—experiences a modest rise to an average of two times 
when β is increased to 0.50, reflecting its role as the upstream supplier of the exported 
energy. Overall, the EVEN strategy markedly strengthens the voltage profile of the weak 
residential system while imposing only negligible stress on the more r obust industrial
backbone.

(a) Aggregated voltage violations in the 
residential network 

(b) Aggregated voltage violations in the 
industrial network 

(c) Total number of violations per MC run in 
the residential network 

(d) Total number of violations per MC run in 
the industrial network 

Fig. 2. Hosting capacity analysis results of the two distribution networks 

Figure 3 visualizes the spatiotemporal undervoltage pattern in the residential feeder 
for the base case and the EVEN-10% scenario. Marker color denotes the mean deviation 
below the 0.95 p.u. limit, and marker area is proportional to the seven-day violation 
count aggregated over 200 MC runs. Without EV support, widespread and severe viola-
tions concentrate in the evening peak (18:00–24:00), driven by high household demand. 
Supplying just 10% of that demand from vehicle batteries attenuates both the depth and 
frequency of these evening breaches and slightly lowers the number of affected buses.
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Daytime conditions are unchanged because the fleet is off-site; hence larger energy-
offset targets (EVEN-20% to –50%) yield little extra benefit, consistent with the plateau 
seen in Fig. 2. 

(a) Average hourly voltage violations for each bus 
in the residential network for no EV case 

(b) Average hourly voltage violations for each bus 
in the residential network for EVEN-10% case 

Fig. 3. Bubble plot of the average hourly voltage violations for each bus in the residential network 
for (a) no EV case, and (b) EVEN-10% case. 

In summary, the analysis shows that the EVEN solution can significantly improve 
voltage regulation in the weak rural feeder while imposing only negligible additional 
stress on the robust industrial backbone. When the upstream network retains sufficient 
hosting capacity, energy withdrawn there and injected downstream cuts undervoltage 
depth and frequency in the residential system without breaching limits in the source 
feeder. These gains, however, arise solely during the hours in which EVs are connected 
to the weak network. Scenario sweeps further indicate the existence of an optimum 
demand-offset target—here around 10% of local load—beyond which incremental ben-
efits saturate for the residential feeder and begin to raise violation counts in the industrial 
network. 

3.3 Battery Degradation Results 

Figure 4 quantifies the EV battery cycling degradation scaled to one year period in 
different scenarios. In the reference case, i.e., unidirectional overnight charging only, the 
mean capacity degradation attributable to cycling is 0.4%/year. Introducing bidirectional 
operation to offset 10% of local demand doubles the average to around 0.8%/year; 
raising the offset to 50% pushes the fleet-wide mean to about 1.5%/year. Dispersion 
is considerable: vehicles that supply the highest energy volumes (up to 50 kWh per 
day at β = 0.50) experience annual cycling losses exceeding 4%. Importantly, Sect. 3.2 
showed that the EVEN-10% scenario already delivers most of the grid-support benefit, 
implying that a modest (i.e., about 0.4%/year) increment in battery ageing suffices to
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secure substantial network gains. Because the degradation metric in (6) is chemistry-
specific, absolute values will vary with cell design; the present results should therefore 
be interpreted as qualitative guidance on the trade-off between grid support level and 
battery wear. 

Fig. 4. Violin plot of annual EV battery degradation due to cycling in each scenario 

4 Conclusions 

This study analyzes how E-mobility can be used as a resource for enhancing the perfor-
mances of distribution networks with limited hosting capacity. It presents a stochastic 
time-series framework that co-optimizes bidirectional electric-vehicle (EV) charging 
schedules for inter-feeder energy exchange and quantifies the resulting impacts on both 
network operation and battery health. Two real-world distribution systems, a voltage-
constrained rural residential feeder and a capacity-rich industrial feeder, serve as case 
studies. The main findings are summarized below. 

• EVs have large potential for delivering electricity between different places of the 
power grid. 

• Even a small amount of electricity delivery can significantly enhance the hosting 
capacity of weak distribution networks. Offsetting only 10% of the evening demand 
at the weak feeder cuts its undervoltage index by ~ 80% and lowers violation counts 
by ~ 65%. 

• When the source feeder possesses adequate reserve capacity, the additional power 
export raises its violation rate only marginally (≤2 events per week at a 50% offset), 
indicating negligible operational risk. 

• Delivering electricity will increase the battery cycling degradation. However, when 
the amount of delivered electricity is small, the cycling degradation will not increase 
significantly. 

This study proposes a cost-effective and scalable solution for enhancing the hosting 
capacity in weak distribution network without the need of large-scale reinforcement
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of the existing grid infrastructure. Future research will benchmark this strategy against 
other flexibility options and smart charging strategies and incorporate calendar ageing 
models to estimate total battery degradation under prolonged deployment. Future work 
will also investigate the economic performances of the proposed solution compared with 
other solutions. 
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Abstract. In electric vehicles (EV) ecosystem, Charging-as-a-Service (CaaS) 
with subscription models has emerged as a promising approach to optimize EV 
charging infrastructure while ensuring cost-effectiveness and accessibility. How-
ever, traditional optimization methods struggle to handle the complex, dynamic 
nature of large-scale EV charging networks. This paper proposes a novel Charging
-as-a-Service (CaaS) business model leveraging the Variational Quantum Eigen-
solver (VQE) algorithm to optimize energy management in Vehicle-to-Grid (V2G) 
systems. By integrating quantum computing with V2G infrastructures, the pro-
posed model addresses the increasing computational complexity of large-scale 
energy optimization in smart grids with high EV penetration. The VQE algorithm 
is utilized to minimize the system Hamiltonian representing energy cost and grid 
stability parameters, offering superior performance over classical optimization 
approaches in terms of scalability and convergence. The paper explores the inte-
gration of quantum computing to enhance CaaS subscription models by leveraging 
quantum optimization algorithms for real-time charging scheduling, demand fore-
casting, and grid resilience. The CaaS model enables stakeholders including EV 
fleet operators, energy providers, and grid managers to access quantum comput-
ing resources on demand, reducing upfront investment and enabling adaptive, 
high-performance energy decision-making. Simulation results demonstrate the 
feasibility and benefits of the quantum-enhanced model, including improved grid 
resilience, reduced peak load, and enhanced economic returns for participants. By 
harnessing the power of quantum computing, this study aims to revolutionize EV 
charging by enabling faster decision-making and improved resource allocation. 

Keywords: Charging-as-a-Service · EV energy scheduling · quantum 
hamiltonian · subscription tiers · V2G · variational quantum eigensolver 

1 Introduction 

Power distribution across the grid is facilitated by quantum computing. This equilibrium 
keeps some components from being overworked. It increases the system’s resilience and 
lowers the danger of outages. Quantum computing can be used by engineers to anticipate 
and stop power grid disasters. This can be done by identifying weak points and taking 
early action. A model is developed to identify the optimal placement of EVCS by utilizing 
a novel quantum annealing (QA) algorithm and quantum computation (QC).
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The knapsack-based formulation is suggested to address the EV. Charging problem 
by utilizing the quantum approximation optimization algorithm (QAOA) [1]. A thorough 
summary of the PQC algorithms’ present migration status in the automobile industry 
has been offered [2]. A quadratic unconstrained binary optimization issue of optimal 
power flow has been solved using quantum annealing [3]. The problems, such as late 
message delivery, computational complexity, and data congestion, have been analysed 
[4]. For EV charging systems, Quantum Reinforcement Learning (QRL) maximizes the 
distribution of charging resources according to current customer demand [5]. 

The rapid adoption of Electric Vehicles (EVs) has transformed the transportation 
industry, particularly in fleet-based operations such as logistics, ride-hailing, and public 
transport. However, scalability, cost-efficiency, and reliability remain key challenges for 
fleet operators managing large numbers of EVs. Traditional pay-per-use charging models 
often lead to unpredictable costs, operational inefficiencies, and downtime, making them 
less viable for fleet-based operations. 

To address these challenges, Charging-as-a-Service (CaaS) in a subscription model 
has emerged as an innovative solution. This model allows fleet operators to subscribe to 
charging services at fixed or dynamic rates, providing predictable energy costs, prior-
ity access to charging stations, and optimized charging schedules. Unlike conventional 
charging approaches, CaaS ensures a seamless and cost-effective charging experience, 
reducing range anxiety and improving fleet efficiency. 

The success of EVs in a market depends on figuring out the best location for EVCS.To 
address this issue, a new quantum-classical solution has been suggested [6]. Using atomic 
search optimization(ASO), this work proposes an efficient planning methodology for 
electric vehicle (EV) fast-charging stations (CS). The suggested technique binarizes the 
algorithm using quantum operations and outperforms the current binary ASO algorithm 
in terms of convergence rate. Quantum Neural Networks (QNNs), which are the result 
of quantum computing, employ the superposition states of quantum bits to encode data 
more efficiently [7]. QuantumCharge, a PQC extension, sets the future safe EV charging 
infrastructure [8]. Quantum annealing is proposed to solve combinatorial optimal power 
flow problems [9]. A work presents a blockchain and Quantum Reinforcement Learning 
based optimized Energy Trading (BQL-ET) model for E-mobility [10]. A structured and 
thorough overview of the current migration state of PQC algorithms in the auto industry 
is presented [11]. 

A quantum approximate optimization algorithm (QAOA) is suggested to analyze the 
effect of electric vehicle (EV) charging stations on the dynamic operations of microgrids 
[12]. A study shows the gate-based quantum optimization capability for a real-world 
use case. It compares benchmark results from the quantum approximate optimization 
algorithm (QAOA) with those from the class [13]. A combinatorial power flow ( PF) 
algorithm and a modified version of the PF algorithm that conforms to the principles of PF 
analysis, the adiabatic quantum PF algorithm (AQPF). Both use model formulations and 
Quadratic Unconstrained Binary Optimization (QUBO) [14]. A model for optimization 
is offered to determine the best location for new EV charging stations [15]. The system’s 
components are modeled using a multi-agent artificial intelligence tool, and an energy 
management algorithm (EMA) is employed to maximize energy utilization and aid in 
decision-making in hybrid electric vehicles system [16]. A study provides experimental
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research and comprehensive design processes for intelligent, affordable, eco-friendly, 
and user-friendly electric bike charging systems [17]. 

1.1 Research Gap 

Although Charging-as-a-Service (CaaS) and Vehicle-to-Grid (V2G) technologies are 
increasingly being explored to enhance electric mobility and grid integration, several 
critical research gaps persist when attempting to incorporate quantum computing and 
subscription-based service models: 

• Lack of Quantum-Optimized Scheduling in Subscription-Aware V2G Systems: 

Existing CaaS-V2G frameworks rely predominantly on classical optimization tech-
niques, which are computationally inefficient for large-scale, dynamic environments 
involving thousands of electric vehicles (EVs), fluctuating grid loads, and differentiated 
service tiers. The potential of quantum computing to solve such NP-hard scheduling 
problems more efficiently has yet to be fully investigated. 

• Underdeveloped Tiered Subscription Mechanisms in Grid-Aware Contexts 

Most current research either treats EV charging as a uniform service or applies sim-
ple pricing models without accounting for differentiated user priorities and service guar-
antees that subscription models can offer. The integration of multi-tiered subscription 
strategies with quantum decision-making remains largely unexplored. 

• Insufficient Real-Time Optimization under Uncertainty: 

Classical solvers often fall short in adapting to rapidly changing conditions such 
as EV arrival/departure times, variable renewable generation, or fluctuating energy 
demands. Quantum algorithms offer probabilistic sampling and parallelism, yet their 
application to stochastic or adaptive CaaS planning in V2G systems remains limited in 
the literature. 

1.2 Contributions 

This work introduces a novel quantum computing-based charging-as-a-service (CaaS) 
framework with a Subscription Model tailored for Vehicle-to-Grid (V2G) systems, offer-
ing a pioneering approach to address the challenges of real-time energy optimization, 
user-centric flexibility, and secure transaction management in modern smart grids. The 
key contributions of this work are as follows: 

1.2.1 Quantum-Enabled Optimization for V2G Energy Management 

We propose a quantum computing paradigm leveraging quantum annealing or variational 
quantum algorithms (VQA) to solve the high-dimensional, nonlinear optimization prob-
lems involved in dynamic energy scheduling between electric vehicles (EVs) and the 
grid, outperforming classical solvers in scalability and response time.
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1.2.2 Subscription-Based Charging-As-A-Service (CaaS) Architecture 

A unique service model is introduced where EV users subscribe to tiered charging 
plans (e.g., peak/off-peak, priority access, green energy guarantees), enabling predictable 
revenue for service providers and flexible, contract-based engagement for consumers. 
The simulation results demonstrate that the proposed model significantly improves grid 
load balancing, energy cost efficiency, and EV owner satisfaction compared to traditional 
centralized charging models without quantum optimization. 

2 Charging-As-A-Service with Subscription Model for V2G 

As electric vehicle (EV) adoption increases, Charging-as-a-Service is emerging as a 
viable business model to provide reliable and cost-effective charging solutions. With the 
integration of Vehicle-to-Grid (V2G) technology, EVs can not only draw power from 
the grid but also supply energy back, creating a dynamic energy ecosystem. However, 
current charging models often lack flexibility in pricing, grid interaction, and fleet man-
agement. Charging-as-a-Service (CaaS) with a subscription model is formulated as an 
optimization problem where revenue, costs, and customer demand interact dynamically. 
Below is a structured mathematical framework for this business model. A subscription-
based CaaS model for V2G-enabled EVs allows users (individuals and fleets) to access 
charging services at fixed or dynamic rates, while also benefiting from energy trading 
opportunities. This approach optimizes grid stability, reduces energy costs, and enhances 
renewable energy utilization. 

2.1 Notation and Definitions 

N = Number of subscribed users. 
S = Subscription fee per user per month ($) 
Cf = Fixed costs (infrastructure, maintenance, rent, etc.). 
Cv = Variable cost per charging session. 
λ = Average number of charging sessions per user per month. 
Pc = Average power consumed per charging session (kWh). 
Ce = Cost per kWh of electricity($/kWh) 
R = Total revenue per month. 
Ct = Total cost per month. 

2.2 Revenue Model 

The total revenue is derived from the monthly subscription fees: 

R = N .S (1)

where: 
R increases with more subscribers N . 
S can be static or dynamic, based on demand.
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2.3 Cost Model 

The total cost per month consists of fixed costs and variable costs. 

Ct = Cf + N .λ.(Cv + Pc.C e) (2)

where fixed costs Cf include station installation, maintenance, software, and rent. 
Variable costs depend on energy consumption Pc per session costs, and electricity price. 

N .λ. represents the total number of charging sessions per month. This formula helps 
set the optimal subscription fee to balance user demand and profitability. A mathematical 
framework for CaaS with a subscription-based V2G model must consider energy pricing, 
power flow, battery degradation, grid stability, and revenue optimization. Below are key 
equations for modeling charging, discharging, subscription pricing, and optimization in 
a V2G-enabled system. The power flow between the EV battery and the grid must be 
balanced: 

Pnet,i(t) = Pcharge,i(t) − Pdischarge,i (t) (3)

where, Pnet,i(t) = Net power drawn from the grid by EV i at time, Pcharge,i(t) = Power 
supplied to EV i from the grid at time t. 

For grid stability, the total energy exchanged by all EVs should be balanced: 

N 

i=1 

Pnet,i(t) = Pgrid (t) − Prenewable (t) (4)

Pgrid (t) = Total power available from the grid at time, 
Prenewable(t) = Renewable energy contribution at time t, 

2.4 Problem Formulation 

We aim to optimize charging/discharging schedules and subscription plan allocations 
using Variational Quantum Eigensolver, considering: subscription tiers (e.g., Basic, 
Premium), charging costs & energy prices, user demands, grid constraints, vehicle 
availability, and battery states. 

2.4.1 Decision Variables 

xi,t ∈ {0,1 }:Binary variable indicating if vehicle i is charging (1) or not (0) at time t. 
ys i ∈ {0,1 }: Subscription selection variable for vehicle i under plan s. 
pt : Price of electricity at time t 
Ei : Energy demand of vehicle i. 
Bmax 
i , Bmin 

i : Battery capacity bounds for vehicle i. 
Quantum variables are mapped as xi,t, and y

s 
i (Pauli-Z spin representation).
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2.4.2 Objective Function 

The cost function for Charging-as-a-Service (to be minimized): 

min{xi,t ,ys i } i t 

pt .xi,t t + 
i s 

Csy
s 
i (5)

Cs : Fixed subscription cost for tier .s 
t: Time slot duration 

2.4.3 Constraints 

a. Energy Demand Satisfaction: 

t 

xi,t .ri t ≥ Ei∀i (6)

ri : Charging rate for vehicle i 
b. Single Subscription Tier per Vehicle: 

s 

ys i = 1∀i (7)

c. Battery Limits: 

Bmin 
i ≤ 

t 

xi,t .rt t ≤ Bmax 
i (8)

3 Proposed VQE for Energy Cost Optimization in V2G CaaS 

The Variational Quantum Eigensolver (VQE) offers a novel approach for energy cost 
optimization in Charging-as-a-Service (CaaS) systems integrated with Vehicle-to-Grid 
(V2G) networks. In this context, the optimization challenge of minimizing electric-
ity costs while satisfying vehicle energy demands and selecting appropriate subscrip-
tion models is encoded as a cost Hamiltonian using a Quadratic Unconstrained Binary 
Optimization (QUBO) formulation. VQE transforms this cost function into a quantum 
Hamiltonian, representing the energy landscape of the system. A parameterized quan-
tum circuit (ansatz) is prepared, and its expected energy is measured iteratively through 
quantum-classical feedback loops. Classical optimizers adjust the circuit parameters to 
minimize this expectation, effectively finding the optimal EV charging and subscription 
configurations. This hybrid quantum-classical technique enables efficient exploration of 
complex, high-dimensional solution spaces that are often intractable for classical meth-
ods, making VQE a promising tool for real-time, scalable energy cost management in 
CaaS and V2G infrastructures. All the above constraints and objectives are considered 
in a Quadratic Unconstrained Binary Optimization (QUBO) form. 

Let: X = xi,t, ys i a vector of all binary variables. 
The QUBO problem becomes 

min 
X 

X T QX (9) 

where Q is a symmetric matrix encoding: Linear terms (costs), Quadratic terms 
(interactions), Penalties for violating constraints (using Lagrange multipliers).
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3.1 Penalty-Based Reformulation: 

Q = Qcost + λ1Qenergy + λ2Qsubscription + λ3 Qbattery (10)

where each Q∗ models a component of the problem, and λi are penalty weights. 
In QUBO, the cost function maps to a Hamiltonian: 

Ĥc = 
(i,j) 

Qij Ẑi Ẑj + 
i 

Qii ˆ Zi (11)

Zi is the Pauli-Z operator for qubit i. The minimum eigenvalue corresponds to the 
optimal solution. We want to minimize the total energy cost of charging/discharging EVs 
under different time-of-use pricing and subscription models, while satisfying vehicle 
energy demands and grid constraints. Form the Cost Function (Energy + Subscription 
Fees),

C(x, y) = 
i,t 

pt .xit .ri t + 
i,s 

Cs. ysi (12)

Ĥ = 
i 

Qii 
(I − Z i)

2
+ 

i<j 

Qii 
(I − Zi) I − Zj

4 
(13) 

This Hamiltonian represents the total cost to be minimized as an energy expectation. 
We now run VQE to solve: 

min 
θ 

ψ (θ ) = Ĥ ψ (θ) (14)

where: ψ(θ  ) U (θ )| 0 : parameterized quantum circuit (ansatz) 
H : cost Hamiltonian encoding energy pricing and constraints 
We iteratively update θ to minimize the expected energy: 

ψ(θ ) = Total Cost of Charging + Subscription (15)

min 
θ 

ψ (θ )| Ĥcaas|ψ ( θ) (16)

where H caas encodes the energy prices, subscription costs, and operational constraints 
of the V2G system. 

4 Results and Discussion 

A Charging-as-a-Service (CaaS) platform offers three subscription tiers Basic, Standard, 
and Premium, each with different monthly fees, energy limits, and per-kWh overage 
rates. The simulation evaluates user energy consumption, revenue generation, and service 
utilization.
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4.1 Basic Tier 

In this tier scheme, most users consumed energy close to the free quota. The overage 
revenue is minimal, indicating low additional usage. This tier primarily drives volume-
based revenue through a large user count rather than energy overage, with the following 
details: Subscribers: 100, Monthly Fee: $20, Included Energy: 50 kWh, Average Usage: 
– 52 kWh. 

4.2 Standard Tier 

Moderate energy overage results in a healthy mix of fixed and variable revenue. This tier is 
balanced in terms of cost and user consumption behavior. It offers a steady revenue stream 
with manageable energy loads with the following details: Subscribers: 70, Monthly Fee: 
$40, Included Energy: 100 kWh, Average Usage: −106 kWh. 

4.3 Premium Tier 

Users in this tier are heavy energy consumers, frequently exceeding their quota. Despite 
the smaller user base, this tier contributes significantly to total revenue through both fixed 
fees and overage charges with the following details. Subscribers: 30, Monthly Fee: $60, 
Included Energy: 200 kWh, Average Usage: −218 kWh. 

4.4 Energy Delivery Analysis 

Energy delivery aligns with expected usage patterns. Premium users are the most energy-
intensive. This data is critical for charging station planning, ensuring capacity matches 
usage. Total Energy Delivered: −16,584 kWh, Basic: −5,213 kWh, Standard: −7,437 
kWh, Premium: −3,934 kWh. 

4.5 Revenue Analysis 

The Standard Tier is the top revenue generator due to its balance between user count 
and energy overage. Premium users bring high per-user revenue despite being fewer in 
number. The analysis says: Total Revenue: −$7,742.90 and Revenue Distribution: Basic 
Tier: −28%, Standard Tier: −41%, Premium Tier: −31%. We simulate a Variational 
Quantum Eigensolver (VQE) optimization process for minimizing the total cost in a 
Charging-as-a-Service (CaaS) system with 5 Electric Vehicles (EVs), 4 time slots, and 
binary subscription selection. The θ is updated to minimize the expected energy (14)– 
(16), Fig. 1. 

The following data is chosen for a realistic CaaS system over a month. 
N = 200 users, S = 25 ($), Cf = 3000$, Cv = 1.50$, λ = 10 sessions, Pc = 

15kWh, Ce = 0. 12$kwh The total revenue per month = 200 × 25 = 5000$, Total monthly 
sessions = 200 ×10 sessions, Total kWh = 30000 kWh, Electricity Cost = 3600$. 
In a Quantum Hamiltonian formulation using the QUBO model for a Charging as a 
Service (CaaS) system with 5 Electric Vehicles (EVs) and 4 time slots, the objective was
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to minimize the total cost while satisfying user energy demands. In a Charging-as-a-
Service (CaaS) framework, electric vehicle (EV) charging is managed dynamically using 
service-based models. A Variational Quantum Eigensolver (VQE)-inspired optimization 
process minimizes the total cost in a Charging-as-a-Service (CaaS) system. 

Fig. 1. A The variation θover 1000 iterations to minimize expected energy 

It handles binary decision variables to optimize energy usage, minimize cost, and 
enhance convenience for users and service providers. The scheduling of EV charging 
is a core component that ensures efficient grid utilization and customer satisfaction.4 
discrete time intervals (T1, T2, T3, T4) over a typical operational window (e.g., 6 AM 
to 10 AM) are considered, Table 1. Each time slot has a maximum power availability 
constraint equal to 20 kWh per day. Charging one EV per slot delivers 10 kWh, and each 
charging session incurs an additional $0.50 session cost. 

Table 1. Illustrative Charging and V2G schedule (kWh) 

EV\Time Slot T1 (6–7 AM) T2 (7–8 AM) T3 (8–9) AM T4 (8–9)AM Net Energy 
Change 

EV1 5(charge) −2(V2G) – – +3 

EV2 – −3(V2G) 5(charge) – +2 

EV3 – – 6(charge) −3(V2G) +3 

EV4 3(charge) 3(charge) −2(V2G) – +4 

EV5 6(charge) – – –4(V2G) +2 

Grid Net Flow +14 0 +9 0 

+ve values = energy drawn from grid (char ging)
–ve values = energy injected to grid (V2G)
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4.6 Key Features of the Schedule 

• Load Balancing: Charging loads are distributed to prevent congestion at any time 
slot. 

• Fair Allocation: Each EV is allocated energy according to its requirement without 
exceeding grid constraints. 

• Flexible Timing: Partial charging across multiple slots allows better resource 
utilization. 

• Grid Efficiency: Smooth load profiles prevent transformer overloading and reduce 
peak shaving needs. 

• Grid Support: V2G is utilized during T2, T3 and T4 when grid demand is likely high. 

5 Conclusion 

The integration of quantum computing into a Charging-as-a-Service (CaaS) framework 
with a subscription-based model for Vehicle-to-Grid (V2G) systems presents a transfor-
mative approach to managing the growing complexity of electric vehicle (EV) energy 
services. By leveraging the computational advantages of quantum algorithms, such as 
the Quantum Approximate Optimization Algorithm (QAOA) and Variational Quantum 
Eigensolver (VQE), the proposed model enables real-time, scalable, and efficient opti-
mization of EV charging and discharging schedules across diverse service tiers. This not 
only improves the quality of service for end-users through differentiated subscription 
models but also enhances grid resilience by dynamically balancing energy supply and 
demand under uncertainty. The mathematical and algorithmic framework formulated 
herein addresses critical challenges in conventional V2G optimization, including high-
dimensional scheduling, non-linear constraints, and stochastic energy demands. Overall, 
quantum-enhanced CaaS systems represent a promising frontier in smart grid innova-
tion, with the potential to accelerate sustainable mobility, improve energy efficiency, and 
support the future of resilient, intelligent power systems. 

Acknowledgments. This research work is supported by council of technology . U.P (Project Id 
3246) and Department of Higher Education , U.P. (Project Id :78/2024/1015). 

References 

1. Kea, K., Huot, C., Han, Y.: Leveraging knapsack QAOA approach for optimal electric vehi-
cle charging. IEEE Access 11, (9109964–109973) (2023). https://doi.org/10.1109/ACCESS. 
2023.3320800 

2. Lohmiller, N., Kaniewski, S., Menth, M., Heer, T.: A survey of post-quantum cryptography 
migration in vehicles. IEEE Access, 13, (10160–10176) (2025). https://doi.org/10.1109/ACC 
ESS.2025.3528562 

3. Morstyn, T.: Annealing-based quantum computing for combinatorial optimal power flow. 
IEEE Trans. Smart Grid, 14(2), (1093–1102) (2023). https://doi.org/10.1109/TSG.2022.320 
0590

https://doi.org/10.1109/ACCESS.2023.3320800
https://doi.org/10.1109/ACCESS.2023.3320800
https://doi.org/10.1109/ACCESS.2025.3528562
https://doi.org/10.1109/ACCESS.2025.3528562
https://doi.org/10.1109/TSG.2022.3200590
https://doi.org/10.1109/TSG.2022.3200590


Variational Quantum Eigensolver-Based CaaS Business Model for V2G 319

4. Khalid, H., et al.: RAVEN: robust anonymous vehicular end-to-end encryption and efficient 
mutual authentication for post-quantum intelligent transportation systems. IEEE Trans. Intell. 
Transp. Syst. 25(11), 17574–17586 (2024). https://doi.org/10.1109/TITS.2024.3416060 

5. Xu, H., Zhang, A., Wang, Q., Hu, Y., Fang, F., Cheng, L.: Quantum Reinforcement Learning 
for real-time optimization in electric vehicle charging systems. Appl. Energy, 383, (125279) 
(2025). ISSN 0306–2619 

6. Rao, P.U., Sodhi, B.: Hybrid quantum-classical solution for electric vehicle charger placement 
problem. Soft Comput. 27, 13347–13363 (2023). https://doi.org/10.1007/s00500-022-074 
78-x 

7. Hairun, X., Zhang, A., Wang, Q., Yang, H., Fang, F., Cheng, L.: Quantum reinforcement 
learning for real-time optimization in electric vehicle charging systems. Appl. Energy 383, 
125279 (2025) 

8. Kern, D., Krauß, C., Lauser, T., Alnahawi, N., Wiesmaier, A., Niederhagen, R.: Post-Quantum 
Cryptography for Electric Vehicle Charging (2023) 

9. Morstyn, T.: Annealing-based quantum computing for combinatorial optimal power flow. 
IEEE Trans. Smart Grid 14(2), 1093–1102 (2023). https://doi.org/10.1109/TSG.2022.320 
0590 

10. Kumar, M., Dohare, U., Kumar, S., Kumar, N.: Blockchain based optimized energy trading for 
e-mobility using quantum reinforcement learning. IEEE Trans. Veh. Technol. 72(4), 5167– 
5180 (2023). https://doi.org/10.1109/TVT.2022.3225524 

11. Lohmiller, N., Kaniewski, S., Menth, M., Heer, T.: A survey of post-quantum cryptography 
migration in vehicles. IEEE Access 13, 10160–10176 (2025). https://doi.org/10.1109/ACC 
ESS.2025.3528562 

12. Jing, H., Wang, Y., Li, Y., Du, L., Wu, Z.: Dynamics analysis of microgrids integrated with 
EV charging stations based on quantum approximate optimization algorithm. In: 2022 IEEE 
Transportation Electrification Conference & Expo (ITEC), pp. 574–578. Anaheim, CA, USA 
(2022). https://doi.org/10.1109/ITEC53557.2022.9813820 

13. Federer, M., Müssig, D., Klaiber, S., Lenk, S.: Application-oriented quantum computing 
benchmark for an electromobility use case. In: 2022 IEEE International Conference on Quan-
tum Computing and Engineering (QCE), pp. 749–752. Broomfield, CO, USA (2022). https:// 
doi.org/10.1109/QCE53715.2022.00105 

14. Kaseb, Z., Möller, M., Vergara, P.P., et al.: Power flow analysis using quantum and digital 
annealers: a discrete combinatorial optimization approach. Sci. Rep. 14, 23216 (2024). https:// 
doi.org/10.1038/s41598-024-73512-7 

15. Subramanian, N., Alali, H.J., Bin Ghaith Alsuwaidi, A.R.: EV charger placement optimization 
using D-Wave quantum computing solvers. In: 2023 IEEE International Smart Cities Confer-
ence (ISC2), pp. 1–4. Bucharest, Romania (2023). https://doi.org/10.1109/ISC257844.2023. 
10293427 

16. Mansouri, N., et al.: Control and optimization of hydrogen hybrid electric vehicles using 
GPS-based speed estimation. Electronics, 14(1), 110 (2025). https://doi.org/10.3390/electr 
onics14010110 

17. Ilahi, T., et al.: Comprehensive design analysis of economical e-bike charger with IoT-
empowered system for real-time parameter monitoring. J. Adv. Transp. 2387983. Advance 
Online Publication (2025). https://doi.org/10.1155/2024/2387983

https://doi.org/10.1109/TITS.2024.3416060
https://doi.org/10.1007/s00500-022-07478-x
https://doi.org/10.1007/s00500-022-07478-x
https://doi.org/10.1109/TSG.2022.3200590
https://doi.org/10.1109/TSG.2022.3200590
https://doi.org/10.1109/TVT.2022.3225524
https://doi.org/10.1109/ACCESS.2025.3528562
https://doi.org/10.1109/ACCESS.2025.3528562
https://doi.org/10.1109/ITEC53557.2022.9813820
https://doi.org/10.1109/QCE53715.2022.00105
https://doi.org/10.1109/QCE53715.2022.00105
https://doi.org/10.1038/s41598-024-73512-7
https://doi.org/10.1038/s41598-024-73512-7
https://doi.org/10.1109/ISC257844.2023.10293427
https://doi.org/10.1109/ISC257844.2023.10293427
https://doi.org/10.3390/electronics14010110
https://doi.org/10.3390/electronics14010110
https://doi.org/10.1155/2024/2387983


Multi-Agent Systems and Local Market 
Coordination



Towards ICT-Enabled Multi-agent Based 
Operations in Local Energy Communities: 

A Proof of Concept 

Haoyu Huang1(B) , Natascha Fernengel2 , André Xhonneux1 , 
Alexander Holtwerth1 , Michael Hehemann3, Eugen Hoppe3 , 
Simon Waczowicz2 , Kevin Förderer2 , Veit Hagenmeyer2 ,

and Dirk Müller1,4

1 Institute of Energy and Climate Research, Energy Systems Engineering (ICE-1), 
Forschungszentrum Jülich GmbH, Jülich, Germany

h.huang@fz-juelich.de 
2 Institute for Automation and Applied Informatics (IAI), K IT, Karlsruhe, Germany

natascha.fernengel@kit.edu 
3 Institute of Energy and Climate Research, IET-4: Electrochemical Process 

Engineering, Forschungszentrum Jülich GmbH, Juelich, Germany 
4 Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy

Research Center, RWTH Aachen University, Aachen, Germany

Abstract. The growing decentralization of energy systems requires scal-
able, flexible coordination of distributed generation, energy storage, 
and demand-side flexibility among local energy communities. This work 
builds upon the agent-based scheduling framework MASSIVE, extend-
ing its capabilities to operate in real-world settings. Within the exten-
sive framework, agents participate in the local electricity market by sub-
mitting bids based on operational constraints and preferences of local 
energy components or aggregates, such as a campus. Optimized setpoints 
derived from market clearing are sent as control signals to physical or 
simulated assets. To enable the transmission to be modular, interoper-
able, and responsive in real time, we extend the MASSIVE framework 
with a lightweight, MQTT-based layer. We validate the applicability of 
these control signals through a series of experiments involving real hard-
ware and technical and safety constraints. Additionally, a geographically
distant battery system was incorporated in real time and it effectively fol-
lowed market-driven setpoints. The results confirm that a decentralized,
agent-based market coordination model facilitates flexible integration of
physical energy systems. Plug-and-play functionality, heterogeneous con-
trol strategies, and interconnection across regions are collectively offered
by the framework, thereby providing a robust path to smart energy com-
munities.

Keywords: Decentralized Optimization · Multi agent system · Local 
energy community · Market-based Coordination · Smart area · Real 
world hardware connection · Cloud based optimization

c The Author(s) 2026 
I. Martinac et al. (Eds.): EIA Nordic 2025, LNCS 16095, pp. 323–340, 2026. 
https://doi.org/10.1007/978-3-032-03101-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03101-3_23&domain=pdf
http://orcid.org/0009-0001-5743-952X
http://orcid.org/0009-0009-9473-186X
http://orcid.org/0000-0001-5399-2363
http://orcid.org/0000-0002-9578-6127
http://orcid.org/0000-0003-0218-0802
http://orcid.org/0000-0002-9064-0196
http://orcid.org/0000-0002-9115-670X
http://orcid.org/0000-0002-3572-9083
http://orcid.org/0000-0002-6106-6607
https://doi.org/10.1007/978-3-032-03101-3_23


324 H. Huang et al.

1 Introduction 

The concept of local energy communities (LECs) in Europe is undergoing a 
steady increase in its prevalence. By 2030, LECs are e xpected to possess up
to 21% of installed solar- and 17% of wind-capacity [4]. However, this growing 
decentralization poses significant challenges for local grid stability, especially as 
traditional distribution networks were not designed for high shares of bidirec-
tional energy flow [20]. 

A key notion introduced to address this challenge is flexibility, which 
describes the ability of a system to adapt generation or demand in response
to expected and unforeseen fluctuations [1]. Flexibility is particularly important 
in LECs, where coordinated actions such as load shifting, energy storage, or 
curtailment can help maintain balance and support grid resilience [6]. 

Coordinating these flexibility potentials requires appropriate control strate-
gies. Centralized approaches formulate the entire community as a single opti-
mization problem, aiming for globally optimal solutions. Although this method 
is effective in smaller s ystems, there is a limit to its scalability when it comes
to more complex systems involving greater participation [35]. Consequently, it 
often becomes impractical for real-world applications [23]. 

To overcome these limitations, research has shifted towards decentralized 
optimization, for which local subproblems are solved independently by each sys-
tem element. T his not only reduces computational effort but also supports mod-
ularity and system scalability [13]. In this context, we use the term component 
to refer to any logical aggregation of sensing, control, and actuation capabilities 
that can make autonomous decisions. This may represent a building-level system, 
renewable generation, or a storage unit. When equipped with real-time metering,
sensors, and communication capabilities, such components can autonomously
monitor their operation and interact with other entities within the smart energy
community [7]. 

These capabilities enables market-based coordination, in which components 
respond to price signals to optimize both local objectives and system-wide out-
comes. Properly designed local energy markets have the potential to align indi-
vidual i ncentives with social welfare, supporting the transition toward a more
sustainable, decentralized energy system [23, 33]. 

This work builds upon a previously developed framework, Multi-Agent 
Scheduling Solution In a Virtual Environment (MASSIVE) [11]. Within the 
MASSIVE framework, each autonomous agent represents one or more energy 
components and handles communication and forecasting. Local optimization is 
utilized for components with flexibility potential. These agen ts collectively form
a multi-agent system (MAS) that enables decentralized, market-based coordina-
tion [21]. 

For rapid experimentation, the framework initially integrated agents and the 
local energy market within a monolithic simulation script executed sequentially 
under perfect foresight, thereby constraining its utilization to theoretical stud-
ies. Despite the implementation of an Message Queuing Telemetry Transport
(MQTT)-based communication layer to support future deployment modes, ini-
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tial research remained in the tightly coupled version. In this work, the commu-
nication layer is adapted for real-time operation and validated under real-world
conditions with live message exchange.

This study investigates the follo wing research questions:

– To what extent can market-based multi-agent coordination enable reliable 
energy balancing across distributed resources in real-time settings?

– What role does MQTT communication infrastructure play in enabling s cal-
able and flexible agent interaction?

– How accurately can market-cleared setpoints be applied to physical hardware, 
and what constraints must be considered in practice?

To explore these questions, we implement and evaluate a proof of concept 
by making use of the extended MASSIVE framework. Our contributions are 
demonstrated through a stepwise validation process, including simulated agent 
interaction, hardware va lidation with market-derived control profiles and the
real-time market participation of a remotely located physical battery storage
system.

This paper is structured as follows: Sect. 2 presents and distinguishes related 
work and the current state of technology. In Sect. 3, the infrastructural basis 
of our experiment is introduced. In Sect. 4, the architecture of the MASSIVE 
framework as well as the tools and infrastructures that were used are laid out. In
Sect. 5, the results of the experiments are presented. These results a re interpreted
and discussed in Sect. 6. Section 7 concludes this work and motivates for future 
work building on the proof-of-concept p resented in this paper are explored.

2 Related Work 

In the early stages of research on multi-agent systems ( MAS), McArthur et
al. [21] proposed the utilization of MAS in power engineering in 2007. Kumar
Nunna et al. [18] developed a model for a virtual energy market for micro-
grids, introducing a two-level agent architecture to analyze supply–demand mis-
matches among distributed energy resources. F ocusing on increasing energy self-
sufficiency in communities, Reis et al. [27] and Prasad et al. [25] applied MAS 
to coordinate energy communities. Prasad et al. [25] integrated deep reinforce-
ment learning to examine cooperative behavior among buildings, while Reis et
al. [27] used real-world data to explore fair cost and benefit allocation within 
communities. Stennikov et al. [31] extended the MAS modeling framework to 
encompass centralized generation, thereby facilitating analysis of the interac-
tion between cen tralized and distributed energy generation. Open-source MAS
frameworks, including AMES [19], AMIRIS [28], and ASSUME [12], facilitate a 
thorough examination of energy wholesale market coordination. The aforemen-
tioned frameworks are lacking at this time in the incorporation of physical assets. 
In order to facilitate real-time control, it is necessary to implement communica-
tion protocols that are well-suited to distributed and time-sensitive energy sys-
tems. In their 2017 study, Ozgur et al. [24] implemented an MQTT-based frame-
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work to coordinate remote cyber-physical testbeds. This implementation demon-
strated the framework’s resilience under cyber-attack scenarios. Jamborsalamati
et al. [17] developed a hierarchical MQTT-enabled architecture for autonomous 
resource allocation and grid demand reduction in smart areas. Estebsari et al. [9] 
proposed a real-time coordination schema for distributed energy resources and 
used MQTT as a communication adapter to facilitate interaction between aggre-
gators and system operators. Despite the limitations of the studies, which rely 
on sim ulation or restricted testbed validation, they collectively underscore the
aptitude of MQTT for real-time, scalable control in distributed energy systems
[8]. 

Conversely, the FlexQGrid project conducted a field experiment in a residen-
tial neighborhood, examining household participation in a quota-based demand
response program [30]. However, FlexQGrid did not prioritize component-level 
optimization or incorporate sector-coupling technologies, such as hydrogen stor-
age, w hich are imperative for achieving seasonal flexibility.

3 Research Environment 

Functioning as a LEC, the Living Lab Energy Campus (LLEC) at Forschungs-
zentrum Jülich Germany (FZJ) serves as a flexible testbed for the exploration 
and evaluation of innovative monitoring and con trol solution for district energy
systems such as LEC with a high share of renewables [2]. Beyond the shelf 
components, the LLEC hosts multiple advanced technologies for the conversion 
and storage of energy to explore cross-sectoral flexibility. This includes a low-
temperature district heating network with heat pumps and associated thermal 
storage, large-scale battery energy storage systems and a hydrogen energy infras-
tructure that encompasses production, storage, and reconversion. The hydrogen 
infrastructure comprises e.g. a 400 kW proton exchange membrane (PEM) elec-
trolysis test stand, which is capable of investigating different stacks, ranging from
in-house developed to commercial products, to characterize their distinct electro-
chemical behaviors [8]. The test bench employs a programmable logic controller 
(PLC) from Beckhoff. This controller facilitates the integration of electrolysis 
into comprehensive energy system test series. In these test series, setpoints are 
derived from model-based controllers executed in the cloud, enabling a sophisti-
cated and interconnected approach to energy system testing. [8] 

However, to effectively utilize this potential, automated, data-driven decision-
making is required to determine when and how m uch of each form of flexibility
should be used [3]. This decision-making process starts with internet of things 
(IoT)-based status monitoring of components in the smart area [26], which 
generates a rich data set to support demand forecasting. Based on this data, 
energy management systems coordinate the optimal use of waste heat in the low-
temperature district heating network [32] and the optimal interplay of short-term 
and seasonal storage [14]. A variety of control strategies are used to support this 
process, ranging from rule-based control to model predictive control (MPC) [15]. 
The interoperability of components using different field-bus protocols is enabled
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by a FIWARE-based information and communication tec hnology (ICT) plat-
form [34], which facilitates local integration and interaction between LECs.

To support cross-regional coordination, geographically distributed co-
simulations enable the assessment of LEC flexibility and their dynamic impact
on system stability under realistic conditions [5, 22]. At the Karlsruhe Institute 
of Technology (KIT), a FIWARE Context Broker is hosted to establish a net-
work that connects research centers by exchanging energy data in real time. In 
collaboration with the German Aerospace Center (DLR) and FZJ, a simulation 
and testing process is underway for renewable energy generation and storage in 
future energy systems. This process utilizes real consumer data within the Ener-
gyLab at KIT. In this study, the FIWARE-based data collection functionality
was subjected to evaluation during a live test.

4 Methodology 

This section delineates the fundamental components of the MASSIVE frame-
work for decentralized coordination in LECs. The methodology is built around 
three core components. First, the agent architecture models components as 
autonomous units capable of local optimization and decision-making. Second, the 
market design facilitates coordination and interaction between agents through 
market-based mechanisms. Third, the ICT infrastructure provides the real-time 
communication backbone that connects agents and the marketplace, ensuring
seamless data exchange and operational responsiveness. At the end, the setup of
the experiment in this paper is explained.

4.1 Agent Modeling and Roles 

In order to determine the offer of agents to purchase energy from the local elec-
tricity market, it is necessary for each agent to initially generate a power profile 
forecast of its component. Within the MASSIVE framework, the configuration of 
such simulation models is facilitated by the utilization of human-readable files, 
thereby enabling the instantiation of agents as digital twins when p rovided with
real-time input data. The forecasts can be model-specific, as in the case of a
photovoltaic (PV) system. For a campus agent, forecasts are derived from the
aggregation of multiple simulation results.

Two types of agents are introduced in our architecture. The first type func-
tions primarily as data analyzer, translating real-time environmental data (e.g., 
ambient temperature, solar irradiance, wind speed) from German Weather Ser-
vice (DWD) into forecasts of building heat demand or renewable generation. 
This facilitates the capacity of agents to dynamically adapt to external condi-
tions. The second type of agent not only forecasts their own demand, but also
determines and utilizes the flexibility potential of its components (e.g., thermal
storages, battery systems, controllable loads) by optimizing the their operation
to minimize costs in response to local dynamic price signals. In doing so, they
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generate time-resolved power profiles that reflect the phy sical constraints of the
system.

Agents are further classified into three categories based on their market 
behavior. Consumers, such as office buildings, cover their electricity demand 
exclusively by submitting bids to the marketplace, as power supply contracts 
are not considered in this study. The second group comprises pure generators, 
including renewable sources such as PV panels and wind turbines, as well as 
the public grid itself, which acts as a balancing source during periods of insuffi-
cient local generation. The third group is defined as “active prosumer”, which is
characterized by its dual capacity to consume and produce energy. These may
operate energy storage systems (e.g. batteries or hydrogen storage systems) to
engage in energy arbitrage, buying energy when it is cheap and selling it when
prices are high.

4.2 Market Design and Clearing Mechanism 

In our framework, agent coordination is enabled through market-driven schedul-
ing that operates on a 15-min clearing interval, reflecting the structure of real-
world intraday markets such as EPEX Spot Intraday. The mark et is cleared
using the merit-order principle, in which bids are prioritized based on price to
balance supply and demand [29]. For each clearing interval, the market compiles 
the bids from the agents, which represents the energy demand or supply for the 
subsequent 24 h. At the core of the market-driven scheduling is a linear optimiza-
tion problem, which processes all collected bids to compute the optimal energy 
allocation for each c learing interval. Its objective is to minimize the overall oper-
ational cost of the LEC, while determining a corresponding market-clearing price
for each timestep.

To focus the study on the coordination logic and flexibility aggregation, no 
bidding strategy is applied within the individual agents. Rather than imple-
menting dynamic or strategic bidding behavior, each agent uses a fixed price 
for demand and supply. These values remain constant throughout the simula-
tion. This simplification ensures that market outcomes solely reflect the effects of 
system-level optimization and agent coordination, rather than being influenced 
by complex or competitive bidding strategies. Despite the use of fixed prices, the
market still produces dynamic clearing results, including fluctuations in market
price that arise naturally from changing load and generation conditions. This
demonstrates that the market design remains responsive and effective in coordi-
nating distributed energy resources, even using simplified bidding strategies.

4.3 Agent Communication Framework 

To enable structured and scalable communication within the LEC, a lightweight 
communication layer is used that is based on the MQTT protocol. In line with 
MQTT’s publish/subscribe architecture, agents submit their bids by publishing 
to predefined topics. In order to protect the privacy of its users, agents are
not able to communicate directly with each other or accessing data from other



Towards ICT-Enabled Multi-agent Based Operations in LEC 329

agents. Instead, all agent messages are routed exclusively through a centralized 
marketplace module that functions as the sole subscriber to agent outputs. At 
the end of each market-clearing int erval, the marketplace publishes the resulting
clearing prices and individual load profiles to agent-specific topics.

For direct communication between agents and the energy market, we rely 
solely on the MQTT protocol to minimize system complexity, reduce latency, 
and maintain high responsiveness, which are key requirements for real-time mar-
ket interaction. Beyond the lightweigh t MQTT communication, we also enabled
integration with a FIWARE-based ICT platform for data transmission from
hardware to agent. FIWARE [10] offers advanced functionalities such as data 
contextualization, orchestration, security, and analytics. In the scope of this 
work, each campus operates i ts own instance of the ICT platform to collect
sensor data from its assets.

In the initial version of the MASSIVE framework, a handshake mechanism 
was developed to support modularity and runtime flexibility. This mechanism
enables agents to dynamically join the market [16]. Upon startup, an agent 
sends a registration message containing essential metadata to the marketplace 
that includes the agent in the upcoming market-clearing optimization. Similarly, 
a deregistration process allows agents to gracefully disconnect from the system. 
When an agent leaves, it sends a deregistration message, prompting the mar-
ketplace to remove its entry from the participant list, thereby ensuring that
outdated or inactive agents do not affect future market rounds.

Furthermore, the agents were modularized and containerized using Docker, 
and each was deployed on an OpenStack-based virtual machine. This architec-
tural shift enabled distributed and parallel execution, continuous runtime, and 
clear separation between agents and the marketplace instance, thereby support-
ing both scalability and realistic event-driven message exchange.

Together, these mechanisms enable plug-and-play functionality, allowing 
agents to be added or removed at runtime without restarting or reconfiguring 
the entire system. This real-time communication infrastructure provides a robust 
foundation for coordinating distributed components, and it also supports hard-
ware integration, enabling direct control of physical devices using market-cleared
setpoints.

4.4 Experimental Setup 

The validation of the proposed decentralized, agent-based coordination frame-
work was carried out in a hybrid experimental environment, combining purely 
simulative and real-world components. In the interest of simplicity, the grid con-
straints are not taken into consideration. Figure 1 illustrates the overall structure 
of the experimental setup.

At first, we established a setup of purely simulative component agents to 
the market environment. These components included an PV, electric vehicle 
(EV), building with heat pump, battery energy storage agent and a campus 
agent (FZJ Agent), which comprises multiple selected components of the FZJ
campus. In agents such as the PV agent, bid generation is performed internally
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Fig. 1. Excerpt of experimental setup (not all simulative agen ts are shown)

and the resulting bids are communicated to the marketplace via MQTT. To 
reduce the solving time, the FZJ agent makes use of the controller as proposed
in [15]. For bid generation, FZJ agent aggregates simulation results from multiple 
models using MQTT-based communication. A grid agent, represen ting a backup
capacity (not displayed in the Fig. 1), is added to make sure that the market 
clearing i s always solvable.

In the second step of the validation process, selected load profiles were applied 
to physical devices. These agents were modeled using physics-based simulations 
that closely reflected real hardware deployed on the campus. The application 
of setpoints was time-delayed, and there was no live connection between the 
market and the hardware. In our study, a PEM electrolysis system and a lithium-
ion battery storage system were used to validate the feasibility of executing 
the market-cleared load profiles under real operational constraints. To ensure
that the new legal requirements for cyber security (e.g. IEC 62443 series) are
met as effectively as possible in the future, data transmission within the virtual
local area network (VLAN) of the Jülich campus network was implemented and
secured with a certificate.

In the third step, to demonstrate the validity of market derived load profile 
for hardware control, a live connection was established between the MASSIVE 
framework and a BESS located within the Energy Lab at KIT. The system 
under test consists of seven lithium iron phosphate battery modules, delivering
a usable capacity of 15.4 kWh, and includes a battery management system, an
energy management system, and an inverter.

The generation of bids for physical devices was accomplished through the 
utilization of a customized digital twin, which was configured using the configu-
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ration file embedded in the MASSIVE framework. The optimization process was 
extended to incorporate real-time feedback from the physical system, allowing 
MPC to respo nd dynamically to the battery’s actual performance, while also
accounting for both calendric and cyclic battery aging.

Once a schedule was determined by the market-clearing process, the load 
profile was translated into setpoints, which were periodically transmitted to the 
BESS via an MQTT–Modbus bridge developed at the Energy Lab. The agent 
and the adapter integrating the battery’s measurements in to the FIWARE-based
ICT platform were both containerized using Docker and run in Kubernetes to
ensure stability and deployability.

At the same time, using mainly MQTT for data transport, the current state 
of charge and active power measurements of the battery were used to update 
the corresponding battery entity in the FIWARE-based ICT platform, which 
also stores the data in an InfluxDB database. To ensure that the model of the 
battery and the physical system stayed in alignment, the state of charge was also
fed back into the agent to update the battery model before each optimization.

5 Results 

This section presents the results of a stepwise validation workflow designed to 
evaluate the real-world applicability of the proposed MASSIVE framework. The 
validation process is carried out across three stages of increasing system realism. 
First, we demonstrate real-time interaction among simulated agents connected 
via the ICT platform, validating the communication architecture and decentral-
ized coordination mechanism over multiple weeks. Next, we evaluate whether 
market-cleared setpoint t rajectories can be applied to real hardware components
under controlled test conditions. Finally, we establish a live connection between
market and physical devices, assessing the complete system in a field test.

5.1 Step 1: Simulated Agents 

In this subsection, we evaluate the behavior of a simulated agent representing 
a PV system within our decentralized market framework. The PV agent offers 
its full generation potential based on the weather forecast to the market at each 
time step. Based on the agent’s internal configuration and real-time weather 
data, it generates a 24-h forecast with a resolution of 15-min. The purpose of
this test is to demonstrate the ability of the framework to handle intermittent
renewable generation and apply curtailment when necessary through market-
based coordination.

Figure 2 presents a comparison between the offered and realized power out-
puts of the PV agent over two consecutive days. The offered power (yellow curve) 
represents the maximum generation potential as the weather forecast, calculated 
using irradiance data and the technical capacity of the PV system. The realized
power (green curve) shows the actual dispatched output as determined by the



332 H. Huang et al.

Fig. 2. PV power output - offered power (yellow) vs. actually used powe r (green) (Color
figure online)

market-clearing process. While the offered profile follows the expected solar pro-
duction curve, the realized output is frequently capped below the maximum, 
especially during midday peaks. This behavior is evident on both February 11
and 12, where flat-topped plateaus in the realized output indicate intentional
curtailment initiated by the marketplace.

5.2 Step 2: System Response to Exemplary Market-Cleared 
Setpoint Trajectories 

In this section, we focus on the evaluation of real-world hardware behavior. The 
objective of this stage is to determine whether physical components can accu-
rately track m arket-cleared setpoints under real-time conditions while adhering
to component-specific safety constraints.

Despite the utilization of a physics-based simulation model for signal gen-
eration, their execution was subject to stringent oversight, necessitating man-
ual adjustment of load profiles to ensure adherence to operational constraints.
This included ramp-rate smoothing and exclusion of restricted operating zones,
depending on the device.

The initial live test utilized a PEM electrolysis apparatus with a commer-
cial stack that was under development. As part of the assessment, a 9-h profile 
was applied, which was generated by FZJ agent following the market clearing 
process. In consideration of the device’s operational requirements, particularly 
with regard to current ramp rates, the original market output was subjected to
post-processing to ensure that the current gradient remained below a certain
value.

Figure 3 illustrates the behavior of the electrolysis system during a live test 
conducted on February 6–7, 2025. The red markers represent the original set-
points issued by the market-based coordination framework, which were based on
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Fig. 3. Setpoints vs. system response of PEM electrolysis (Color figure online)

an optimization not including the minimal part-load, while the blue line shows 
the measured current response of the electrolysis. To reflect operational safety 
guidelines, a restricted operation zone (highlighted in red) was defined below a
certain normalized current threshold.

A second live test was performed using a large-scale battery storage system 
(BESS) of LLEC, which was subjected to an excerpt of the power profile deter-
mined by the initial tests with the multiple agents. Although detailed technical 
specifications of the hardware systems cannot be disclosed, all evaluations were
supported by a dedicated data acquisition pipeline based on the ICT platform.
Measurements were recorded per second and stored in a cloud-hosted InfluxDB
database for subsequent analysis.

5.3 Step 3: Real-Time Connection 

In this section, the behavior of a second campus agent (KIT Agent), that was 
deployed to represent a battery system located at KIT, is evaluated. This agent 
was integrated into the existing setup, establishing a live connection between the
market and the real hardware.

This experiment was carried out over several days. The power measurements 
and the battery’s state of charge over the course of 14 h can be seen in Fig. 4 
alongside the schedule that the agent received from the marketplace. Here, the 
active power measurement as well as the scheduled setpoints are displayed in 
Watt, with negativ e values indicating charging, and positive values indicating
discharging of the battery system.

At the start of the experiment the battery’s SOC was 38 %. After a period of 
neither charging nor discharging, it was then charged with up to .1 kW starting 
at 7 pm, and then discharged continually during most of the night, with up to
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Fig. 4. Active power and state of charge of BESS, alongside the load schedule received
from MASSIVE’s marketplace.

.500W. In the morning, periods of inactivity widen and it is only discharged
sporadically with .250W and less. This leaves the BESS with a SOC of 21 % at
the end of the experiment.

The measured power values follow the determined schedule closely with
a deviation around .35W occurring only in one timestep in this time frame, 
and smaller deviations occurring shortly after the battery received a new set-
point. Some deviations were expected using t his BESS, and overall the observed
response was reasonably precise and timely.

As can be seen in this graph, the battery is charged in the evening, when 
there is still some PV production, just before sundown, and discharged during the 
night. This results in a reduction of the time between charging and discharging, 
thereby minimizing losses due to self-discharge over time. In this time frame, the 
battery is charged up to only 40 % of its total capacity. Charging unnecessarily,
which can lead to battery degradation and potential loss of capacity was avoided.
This is consistent with the optimization we used, which incorporates parameters
such as self-discharge, charging losses and battery aging.

6 Discussion 

In this section, the results of the three validation steps will be interpreted and 
discussed. Additionally, we explore the practical considerations involved in hard-
ware integration, with a particular focus on safety and operational constraints.

6.1 Interpretation of Results 

In step 1 (Simulated Agents), the behavior of simulated agents within our decen-
tralized market framework was observed, including varied agents representing
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PV and wind systems, battery storage and heat pump-controlled buildings as 
well as an aggregate agent representing a selected section of the LLEC setup 
at FZJ. An experiment including an agent representing a PV system shows the
offered profile following the PV forecast with most capping occurring around
midday, as can be seen in Fig. 2. Thus the capability of the framework to actively 
curtail PV output when required by system-level constraints or market condi-
tions was demonstrated. Furthermore, the ability of the agent-based market
mechanism to integrate fluctuating renewable energy was confirmed.

In step 2 (Hardware reply to predefined load profile), real-world hardware was 
included and its behavior within our simulated agent framework was observed. In 
order to ascertain the viability of physical devices in adhering to market-cleared 
setpoints, a 9-h profile generated by an agent was applied to a PEM electrol-
ysis. The results demonstrate that the electrolysis system is capable of accu-
rately tracking discrete setpoint changes, maintaining stable operation during 
activation phases and returning to baseline output during inactive periods. The 
findings indicate that market-based control signals generated by the MASSIVE 
framework can be effectively followed by relatively slow-responding hardware, 
such as the electrolysis system, while adhering t o safety constraints. However,
it also highlights the importance of incorporating such safety restrictions dur-
ing the design and calibration of the simulation model to ensure realistic and
executable control behavior. A second live test using a battery storage system
also demonstrated stable and accurate tracking, indicating that market-cleared
dispatch signals can be executed reliably by storage assets.

In step 3 (Real-time connection), a physical system was included in real-time, 
controlling a BESS in a live connection within the MASSIVE framework. A live 
connection between geographically distributed agents and physical devices was 
successfully established, confirming the feasibility of the complete system in a 
field test. Through this experiment, which was running over multiple days with 
timely and correct responses from the BESS to the scheduled setpoints, it was 
demonstrated that the resulting control signals are adequate to apply on real-
world hardware. Furthermore, the load schedule as an optimization result was 
reasonable and well-suited for the battery system, taking into a ccount the sys-
tem’s specifications. While this demonstrates the feasibility of using this frame-
work in a live connection, this validation step was only done using a single com-
ponent. To further validate it, this experiment should be expanded to include
more both real-world and virtual components over a longer time-span.

Overall, the outcomes of this research have demonstrated the applicability of 
the proposed framework. Not only were we able to demonstrate real-time inter-
action among simulated agents connected via the ICT platform over multiple 
weeks, validating the communication architecture and de-centralized coordina-
tion mechanism. By establishing a live connection between geographically dis-
tributed agents and physical devices, we confirm the feasibility of the complete
system. It has been demonstrated that market-cleared setpoints derived from
optimization can be followed by real hardware components.
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Given the prototypical configuration of the framework, the present outcome 
merely substantiates the feasibility o f implementing an ICT-connected MAS for
LECs.

6.2 Practical Challenges of Hardware Integration 

Maintaining the safety of energy systems such as electrolysis, which pose explo-
sion and pressure risks, is a challenge when developing integrated energy systems. 
It is important that the developers of the software and the system technology 
work well together to ensure compliance with safety-relevant and operationally 
limits, even during operation via the ICT platform. For the electrolysis, these 
requirements ha ve been jointly integrated into the communication protocols by
hardware operator and software developer, and then implemented by the man-
ufacturer in the PLC’s MQTT interface program.

It is also imperative to implement additional safety limitations in future 
developments. For example, configurable limits for electrolysis can be specified 
within the test stand, customized to the specific stack installed. It is important 
that these limits should not be override via the MQTT interface. Furthermore, 
the automation of start-up and shut-down processes, in conjunction with the
behavior of the electrolysis with respect to current changes, should be considered
in subsequent development.

6.3 System-Level Considerations 

This study substantiates the viability of coordinating LECs through market-
cleared load profiles and the adaptability of these profiles to physical hardware. 
However, the validation remains constrained in scope. The evaluation was con-
ducted on a standalone basis, encompassing a single BESS and electrolysis, and 
the outcomes were applied exclusively over brief time frames. Consequently, the 
system’s behavior concerning larger-scale participation and seasonal dynamics 
remains to b e explored. To address this, future work should expand the num-
ber of simulated agents. The efficiency of the central market instance in MAS-
SIVE ensures the computational tractability of simulations involving thousands
of agents [11]. Additionally, the incorporation of supplementary real hardware 
will introduce realistic uncertainty and facilitate the testing of agen ts with more
complex optimization strategies, such as MPC.

A further crucial constraint lies in the utilization of a simplified grid model, 
which assumes unrestricted power flows. To capture grid constraints, the M AS-
SIVE framework’s multi-round clearing feature can be adapted to account for
capacity prices [11]. An additional clearing round could reflect distribution lim-
its, with the grid agent raising capacity prices during congestion to influence
market outcomes accordingly.

Adopting these measures will enable the system to evolve in a more realistic 
direction, thereby ensuring its applicability for broader implementation in future
smart energy infrastructures.
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7 Conclusion 

Increasing penetration of renewable energy sources necessitates the provision of 
flexibility, which can be offered by energy communities and smart areas. In this 
work, we propose a decentralized agent-based control framework using a market-
driven scheduling, powered by a lightweight ICT platform. Its applicability under
close-to-real conditions in smart energy system laboratories is validated, estab-
lishing a testbed for future exploration of interacting local energy communities.

Overall, the feasibility of the overall system is confirmed in a field test. We are 
able to show that market-cleared setpoints derived from simulated digital twins 
can be safely applied to real hard-ware components within Living Lab Energy 
Campus at Forschungszentrum Jülich and Energy Lab at Karlsruhe Institute 
of Technology. Furthermore, we validate the framework’s suitability using geo-
graphically distributed agents and physical devices. Autonomous agents ensure
the scalability of the system.

This successful validation of a decentralized, market-based MAS demon-
strates the potential of this concept for the coordination of smart energy areas, 
addressing a possibility for the provision of flexibility in future energy systems.

Future research could integrate more components and smart areas, explor-
ing the framework’s scalability and suitability for more diverse components 
and participants. Furthermore, the incorporation of distribution-grid constraints 
through the multi-round clearing functionality of the MASSIVE framework is 
expected to enhance the realism of the simulation. In the subsequent phase of the 
study, the economic and environmental impact of agent-based flexibility coor-
dination will be examined, with t he incorporation of factors such as wholesale
electricity prices and carbon taxes.
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Abstract. A linear optimization model for peer-to-peer energy 
exchange for residential homes is presented. The model takes into account 
heterogeneous consumption patterns, shared battery storage and sup-
ports intra-group trading among households within the same building, 
as well as inter-group trading between multiple buildings. Using energy 
usage data from Icelandic households and meteorological data for the 
same period, a scenario with two groups of users was simulated, and 
the effects of direct trading within and b etween the groups were stud-
ied. Results indicate that most of the cost savings arise from intra-group
trading instead of inter-group and exchanges with the utility grid. Sen-
sitivity analysis of battery maintenance costs shows that this parameter
needs to be estimated carefully.

Keywords: Peer-to-peer energy trading · Optimization · Battery 
storage · Solar photovoltaic production

1 Introduction 

This paper presents an energy trading model for residential buildings, where 
energy is produced locally using solar photovoltaic panels. Trading occurs 
between individual households within a single building, across buildings, and 
between the buildings and the utility grid. This is an example of a peer-to-peer 
energy (P2P) trading system. In this system, households are categorized as either 
prosumers, who both produce and consume electricity, or consumers who only 
consume electricity. Households within a building can share a single battery for 
electricity storage, and there is also the possibility of a building having no bat-
tery. Assuming that the cost of electricity from the utility grid is higher than the 
cost of purchasing from neighbours, in the same building, or other buildings, it
is possible to lower the total cost of the community by decreasing reliance on the
grid. Surplus energy, that is remaining when local demand has been satisfied,
can be stored in a local battery, if it is present, sold to neighbours, or exported
to the grid.

Recent studies have shown that P2P energy sharing offers several benefits, 
including reduced electricit y costs, lower carbon emissions, increased consumer
c The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
I. Martinac et al. (Eds.): EIA Nordic 2025, LNCS 16095, pp. 341–353, 2026. 
https://doi.org/10.1007/978-3-032-03101-3_24
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empowerment through direct energy trading participation, enhanced demand-
side flexibility, and grid stability in s ystems with significant renewable energy
penetration [13]. P2P energy trading models have emerged during the transition 
toward decentralized and sustainable energy systems, for a recent overview of
the field, see e.g., [11] and the r eferences therein.

A frequently used approach to such P2P systems is mathematical optimiza-
tion, including linear programming, mixed-integer linear p rogramming, and non-
linear programming. Nguyen et al. [10] apply a mixed-integer model for rooftop 
solar production and energy storage, while Long et al. [9] propose an alternative 
model for managing community energy storage using nonlinear programming. A 
peer-to-peer energy-sharing framework for managing both da y-ahead and real-
time energy across communities of prosumers is proposed in [3]. The model 
includes inter- and intra-community strategies aimed at minimizing energy costs 
and maximizing renewable energy usage. Gbadega and Yanxia [6]  present  a  com-
prehensive P2P model that includes rules for energy transactions, aiming to 
maximize social welfare while minimizing inequity among trading participants.
Alam et al. [1] investigate the impact of P2P energy trading within a microgrid 
of interconnected smart homes, foc using on cost optimization through shared
energy resources. In [7] A two-stage P2P energy trading system between pro-
sumers and consumers based on real-time pricing was implemented to reduce 
electricity costs through demand response and optimized appliance scheduling. 
Note that the above list of previous P 2P studies is by no means exhaustive, but
represents some cases that are related to this study. For more comprehensive
reviews, see [12, 13]. 

This paper proposes a P2P energy model specifically designed for residen-
tial buildings in Iceland. While progress towards P2P trading in Iceland has 
been hampered by lack of incentives and unclear regulatory framework, energy 
communities are just beginning to form, currently focusing on internal sharing, 
rather than trading. This work aims to explore mechanisms that could support 
the future development of energy communities in the Icelandic con text. Since res-
idential heating is mainly supplied by geothermal energy, electricity is generally
not used for heating purposes. Furthermore, air conditioning is rarely needed, as
average summer temperatures range between 10 and 13. 

◦C. As a result, electric-
ity is used primarily for powering household appliances and for charging electric 
vehicles. Seasonal variation in electricity demand is therefore relatively small, 
and there is little or no variation in demand due to short-term fluctuations 
in outside t emperature. Moreover, utility electricity prices are currently fixed.
These characteristics collectively support the use of a linear optimization model.

To account for household diversity and usage patterns, residential buildings 
are categorized as shown in Fig. 1. The model differentiates between prosumers, 
households that both produce and consume energy and consumers,  who  only  
consume energy. Each category is further subdivided into single and multi-
household dwellings (e.g., apartment buildings). Households are also classified 
based on whether they possess individual or shared battery storage, or none at
all. The simulation results are based on electricity demand data from Icelandic
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households and matching historical weather conditions. Additionally, a sensitiv-
ity analysis was conducted to e valuate the impact of battery depreciation costs.

2 Methods 

This section presents a detailed description of the linear programming model for 
peer-to-p eer energy exchange among residential households in Iceland.

Residential Building 

Prosumers 

Single 
With Battery 

Without Battery 

Multiple 
With Shared Battery 

Without Battery 

Consumers 

Single 
With Battery 

Without Battery 

Multiple 
With Shared Battery 

Without Battery 

Fig. 1. Classification of residential buildings based on prosumers, consumers and bat-
tery storage. A residential building c an have only consumers, only prosumers or both.

To account for the scenarios shown in Fig. 1 we consider an apartment build-
ing with .N1 ≥ 0 prosumers and .N2 ≥ 0 consumers. These users may share 
a battery storage system, or there may be no battery at all. We allow energy 
exchange both within a single building and between two or more buildings. We 
consider two scenarios. The first involves a single building where prosumers can 
sell surplus energy to each other and share excess energy with consumers within
the same building. This forms a local P2P energy market. The second scenario
considers multiple interconnected buildings, where users can engage in electricity
trading across building boundaries.

We assume there are .R = 1, . . . , r apartment buildings. In each building, 
some residents may have solar panels, and the building may either ha ve a shared
battery or none at all. We assume there are .Nr

1 residents with solar panels
and .Nr

2 residents without them, where the index . r denotes the .r-th apartment 
building. The objective is to fulfill the local demand within each building and to
share surplus energy with other buildings, or the utility grid.
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2.1 Mathematical Model 

In this section we provide a description of the optimization model. We start by 
defining sets of users and help er functions that identify the location and type
of users. Let .P = {p1, . . . , pn} be the set of all prosumers, .C = {c1, . . . , cm} is 
the set of all consumers and .U = P ∪ C is the set of all u sers. Define function
.b : u → N that maps users to buildings. Two users . i and . j are said to be neigh-
bours if they live in the same building. Let .Npp(i) denote the set of prosumers 
that are neighbours to prosumer . i,  l  et .Ncp(i) denote the set of consumers that 
are neighbours to prosumer . i. Define set .Mpc(i) as the set of prosumers that a re
neighbours to consumer . i. Analogously define sets .Npp(i), .N cp(i) and .Mpc(i) of 
prosumers that are not neighbours to prosumer/consumer . i. The time horizon 
is indexed by .t = 1, . . . , T where .T is the length of the c ontrol horizon, here
.T = 24h. The following decision variables are needed: .Gb[t, i] is the amount o f
energy . i buys from the grid, .Gs[t, i] is the amount of energy . i sells to the grid,
.Eb[t, i, j] is the amount of energy that . i buys from . j, .Es[t, i, j] is the amount o f
energy that . i sells to . j, .c[t, i] is battery charging of user . i, .d[t, i] is the battery 
discharging of user . i,  and .B[t, r] is the battery level for building . r at time . t.  The  
following parameters are assumed to be known (fixed): .D[t, i] is the demand o f
user . i, .S[t, i] is the amount of solar photovoltaic energy produced by user . i. 

Energy balance for prosumer .i ∈ P gives 

. D[t, i] = S[t, i] + d[t, i] + Gb[t, i] +
j∈Npp(i)

Eb[t, i, j] +
j∈Npp(i)

Eb[t, i, j] − c[t, i]

− Gs[t, i] −
j∈Npp(i)

Es[t, i, j] −
j∈Ncp(i)

Es[t, i, j] −
j∈Ncp(i)

Es[t, i, j]

−
j∈Npp(i)

Es[t, i, j]

(1) 

and energy balance for consumer .i ∈ C gives 

. D[t, i] = d[t, i] + Gb[t, i] +
j∈Mpc(i)

Eb[t, i, j] +
j∈Mpc(i)

Eb[t, i, j] (2) 

Symmetry between buying and selling gives, for .i ∈ U and .j ∈ P gives 

. Eb[t, i, j] = Es[t, j, i] (3) 

The current demand provides an upper bound on energy purchases of prosumers,
for all .i, j ∈ P , 

.Gb[t, i] ≤ D[t, i] (4) 
Eb[t, i, j] ≤ D[t, i] (5)
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Solar production provides an upper for prosumer selling, for all .i ∈ P and .j ∈ U , 

.Gs[t, i] ≤ S[t, i] (6) 
Es[t, i, j] ≤ S[t, i] (7) 

If two prosumers have surplus energy, they should not t rade amongst themselves,
i.e., for all .i, j ∈ P ,  i  f .S[t, i] − D[t, i] > 0 and .S[t, j] − D[t, j] > 0 then we add 
constrain ts

.Eb[t, i, j] = Eb[t, j, i] = 0. (8) 

A prosumer should not buy and sell at the same time, for all .i, j ∈ P , 

.Gb[t, i] · Gs[t, i] = 0 (9) 
Eb[t, i, j] · Es[t, j, i] = 0. (10) 

These two nonlinear constraints can be linearized by introducing binary variables 
resulting in a mixed-integer optimization problem. However, if pricing assump-
tions described below are satisfied, the constraints become redundant and may 
be omitted from the model. Furthermore, charging and discharging of batteries
can not take place at the same time, for all .i ∈ P , 

.d[t, i] · c[t, i] = 0. (11) 

Since both charging and discharging incur some costs, this constraint is also
automatically satisfied and can be omitted.

The batteries are modeled as follows, for all buildings . r with a shared b attery,

.Bmin[r] ≤ B[t, r] ≤ Bmax[r] (12) 

B[t, r]  =  B[t − 1,  r]  +  μch 
r 

i∈P :b(i)=r 

c[t, i] − 1 
μdis 
r i∈U

d[t, i] (13) 

B[T, r]  =  B[0, r] (14) 

0 ≤ 
i∈P 

c[t, i] ≤ Cch
r (15) 

0 ≤ 
i∈U 

d[t, i] ≤ Ddis
r (16) 

where .Bmin[r] and .Bmax[r] are the minimum and maximum battery levels for
building . r, respectively , .μch

r and .μdis
r are the battery charge and disch arge effi-

ciencies (Table 1).
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The objective is to minimize t he total cost, namely

. 

Cost =
T

t=1 i∈P

pgridbuy · Gb[t, i] − pgridsell · Gs[t, i]

+ pneighborbuy-internal ·
j∈Npp(i)

Eb[t, i, j] − pneighborsell-internal ·
j∈Npp(i)

Es[t, i, j]

− pneighborsell-internal ·
j∈Ncp(i)

Es[t, i, j] + batt_cost · (d[t, i] + c[t, i])

+ pneighborbuy-external ·
j∈Npp(i)

Eb[t, i, j] − pneighborsell-external ·
j∈Npp(i)

Es[t, i, j]

− pneighborsell-external ·
j∈Ncp(i)

Es[t, i, j]

+
T

t=1 i∈C

pgridbuy · Gb[t, i] + pneighborbuy-internal ·
j∈Mpc(i)

Eb[t, j, i]

+ batt_cost · d[t,k,r] + pneighborbuy-external ·
j∈Mpc(i)

Eb[t, j, i]

(17) 
where .pgridsell is the selling price to the grid, .pneighborsell-internal is the selling price to neigh-
bours in the same building, .pneighborsell-external is the selling price to users outside the
building, and .pneighborbuy-internal, .p

neighbor
buy-external and .pgridbuy are the corresponding purchase 

costs. Since both the objective function and constraints are linear, the r esulting
optimization problem is linear. The following assumptions are made:

1. . pgridsell < pneighborsell-external < pneighborsell-internal < pneighborbuy-internal < pneighborbuy-external < pgridbuy
to ensure that binary constraints in Eqs. 9 and 10 are always satisfied. The 
values used in the study are listed in Table 1. 

2. Simultaneous charging and discharging incur additional costs; thus, even 
without explicitly enforcing the constraint .d[t, i] · c[t, i] = 0, the optimiza-
tion inherently avoids suc h behavior.

3. A linear approximation to battery costs is used that includes b oth charging
and discharging [3, 8], 

. Prosumers: batt_cost · (d[t, i] + c[t, i])
Consumers: batt_cost · d[t, i]

The participation willingness index [9] was used as a measure of P2P partic-
ipation. It is defined as the proportion of prosumers whose energy costs under
P2P trading are lower than those under traditional peer-to-grid (P2G) trading.
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Table 1. Battery properties and trading price used in the model.

Battery assumptions, . r denotes the building

.Bmin
[r] Minimum battery level 1.05 k Wh

.Bmax
[r] Maximum battery level 4.2 k Wh

.μch
r Battery charge efficiency . 0.98

.μdis
r Battery discharge efficiency . 0.96

.Cch
r Maximum charging rate 1.05 k W

.Ddis
r Maximum discharging rate 1.05 k W

Trading price a ssumptions
.pgrid

buy Buying price from grid (price + transmission) 20.93 kr/k Wh
.pgrid

sell Selling price to grid 4.186 kr/k Wh
.pneighbor

buy−internal Internal buying price (neighbor) 14.65 kr/k Wh
.pneighbor

sell−internal Internal selling price (neighbor) 10.465 kr/k Wh
.pneighbor

buy−external External buying price (neighbor) 16.744 kr/k Wh
.pneighbor

sell−external External selling price (neighbor) 6.279 kr/k Wh
.batt_cost Battery depreciation cost 2.0 kr/kW h

2.2 Properties of Batteries and Solar Panels 

The battery parameters are derived from the NE–48D100–NP LiFePO4 battery, 
which operates at a nominal voltage of 52.5V and has a capacity of 100Ah.

The number of solar panels installed per household varies depending on 
energy requirements and available space. The total active area increases pro-
portionally with each additional panel. The solar energy output of a single solar
panel at time step . t is calculated using the model from [4]: 

.S[t,i] = ηPV · ηinv · Apv[i] · ψ · G[t]

Gref
1 + ψT T[t] − TSTC (18) 

Here, .ηPV and .ηinv represent the conversion efficiencies of the photovoltaic (PV) 
module and the inverter, respectively, . ψ is a factor accounting for environmen-
tal and operational losses. .ψT denotes the temperature coefficient of maximum 
power, indicating the drop in power output pe r degree Celsius increase in tem-
perature. Here, .G[t] denotes the total radiation incident at time . t, .Gref is the 
incident radiation at reference conditions, .T [t] is the operating temperature of 
the PV cells at time . t and .TSTC is the standard test condition temperature. . Apv
is the panel’s active area, which is scaled by the number of panels (.npanels)  when  
applicable. The parameter values are given in Table 2. 

2.3 Data and Software 

Hourly temperature and solar radiation data were obtained from the Ice-
landic Meteorological Office, recorded in Reykjavik from 1.5.2024 to 30.8.2024.



348 N. Khajoei et al.

Table 2. Key Parameters of the Hyundai HG 430W PERC Shingled Full Black -
HiE-S430HG(FB) Solar Panel.

Parameter Symbol Value Source 
PV Module Efficiency .ηPV 0.207 Datasheet (430W mo del)
Inverter Efficiency .ηinv 0.95 Assumed (typical v alue)
PV Active Area .APV 2.08 .m2 Datasheet 
Derating Factor .ψ 0.9 [ 4] 
Total radiation incident .G input Input 
Standard incident radiation (STC).Gref 1000 .W/m2 [ 4] / STC standard
Temperature Coefficient of Power .ψT . −0.0034. 

◦C Datasheet (. −0.34%) 
Cell Temperature .T input Input 
Reference Cell Temp (STC) .TSTC 25. 

◦C [ 4]/STC s tandard

Anonymized, proprietary residential electricity consumption data from five 
households in the same region, collected via smart meters by a local utility 
pro vider (sampled at one hour intervals), were used in the simulations.

The optimization problem was formulated using the CVXPY m odeling lan-
guage [5] and solved with the GUR OBI solver.

3 Results 

To evaluate the model, we consider two groups of users, referred to as Group 
1 and Group 2. The model is solved on a 24-h basis over a 122 day period 
during the summer of 2024, when solar production in Iceland is at maximum. 
Group 1 includes two prosumers and one consumer, all connected to a shared 
battery. Group 2 includes one prosumer and one consumer, who also share a 
battery. Both groups are connected to the utility grid, which sells energy to 
users and purchases surplus energy from prosumers, both without restrictions.
We evaluate three operational settings. (1) Peer-to-Grid , where all users are
individually connected to the grid (prosumers and consumers) and may share
a battery if available. (2) Intra-trading, where prosumers can exchange surplus
energy within the same group. (3) Inter-trading, which extends intra-group to
include exchanges with users in other groups. Figure 2 illustrates the simu lation
setup.

Table 3 presents the simulation results for all three scenarios. As expected, 
the P2G scenario has the highest cost, followed by intra-trading setting, while 
inter-trading results in the lowest overall cost. Although the absolute differences 
in cost are modest, these results are illustrative and reflect the limited scale of 
the current test case. Additionally, average solar production relative to house-
hold energy demand in this scenario is relatively low. The results also indicate
that most cost savings are obtained through intra-group resource sharing, with
only marginal gains from inter-group trading under the current configuration.
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Inter-trading activity remains infrequent in this example, primarily due to high 
intra-group demand compared to local solar energy production. A representa-
tive trading profile illustrating trading between the two groups is shown in Fig. 3. 
The figure shows clearly how demand for house 3 in group 1 is practically zero 
in the period. The participation willingness among prosumers reached 100% in
both the intra- and inter-trading scenarios (Table 3). 

(a) Group 1: Two prosumers and one con-
sumer with shared battery. House one has 
30 panels and house two has 20. 

(b) Group 2: One pro-
sumer and one consumer 
with shared battery. 
House one has 10 panels. 

Fig. 2. Simulation setup with group 1 on the left and group 2 on the right. Black arrows 
denote connections to the grid, green arrows denote connections to the s hared battery.
Orange arrows denote direct connections that become available in the intra-trading
setting. (Color figure online)

Table 3. Comparison of Costs (IKR) for P2G, Inter-trading and Intra-trading. Nega-
tive values indicate net profit.

Group Participant P2G Intra-trading Inter-trading 
1 Prosumer 1 2172 . −5554 . −6460 
1 Prosumer 2 34231 31436 34116 
1 Consumer 3 46355 53703 51497 
1 Subtotal 84181 79584 79153 
2 Prosumer 1 2579 . −2952 . −2283 
2 Consumer 2 13280 18422 17188 
2 Subtotal 15859 15470 14904 
1+2 Total 100040 95054 94057 

We then analyzed battery discharge patterns across the 122-day period by 
aggregating 24-h profiles over time (see Fig. 4). As expected, charging patterns
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Fig. 3. Example of inter-trading for group 1 in a single 24-h period. Figure legends:
Demand (. D), Solar production (. S), Grid (. G), .T (i, j) intra-trading from user . i to user 
. j, .TE(i, j) from user . i in group 1 to user . j in group 2 and . B is the shared battery level. 
Positive values of . G, . T and .TE denote purchasing, negative va lues denote selling.

generally align with solar availability during daylight, while discharge activ-
ity increases into the evening, peaking near midnight. The discharge behavior 
reflects the relatively high demand compared to solar production, and is also 
influenced b y the modeling assumption that battery levels must return to their
initial state at the end of each 24-h period.

To evaluate the impact of battery depreciation costs, a sensitivity analysis 
was conducted by repeating the simulations using a range of cost values, includ-
ing the baseline value of 2 kr/kWh (Table 4). 

As expected, the total energy costs for both groups increase as battery depre-
ciation costs rise. Interestingly, as battery costs rise, some prosumers experience 
net benefit (i.e., negative net costs indicating revenue generation), while con-
sumers disproportionately absorb the additional cost burden. These findings
suggest that battery depreciation costs must be carefully estimated and allo-
cated fairly if the system is to be implemented in practice.
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Fig. 4. Charging and discharging patterns over the 122-day period on a 24-h basis 
(summation over days) for all households in Group 1 under the inter-trading scenario.

Table 4. The effect of battery depreciation cost (IKR) on the total cost in the inter-
trading scenario. Negative values indicate net profit.

Group Participant 0.5 1 2 4 
1 Prosumer 1 . −160 235 . −6460 . −4466 
1 Prosumer 2 34322 34650 34116 33236 
1 Consumer 3 41799 42246 51497 51981 
1 Subtotal 75961 77131 79153 80751 
2 Prosumer 1 1208 1589 . −2283 . −1652 
2 Consumer 2 11716 12045 17181 17801 
2 Subtotal 12924 13634 14904 16149 
1+2 Total 88885 90765 94057 96900 

4 Conclusions 

This study presented a linear optimization model for peer-to-peer energy trad-
ing. Using data from Iceland, we simulated three scenarios: (1) peer-to-grid, (2) 
P2P trading within pre-defined user groups (intra-trading), and (3) P2P trading 
between different groups (inter-trading). Among the three scenarios, the P2G 
configuration resulted in the highest total cost, followed by intra-trading. Inter-
trading produced the lowest costs, although the absolute differences between 
scenarios were relatively small. The simulations showed that most cost savings 
were achieved through intra-group trading, while inter-group trading yielded
only marginal additional benefits. We also conducted a sensitivity analysis on
battery depreciation costs. The results indicate that when these costs exceed a
certain threshold, consumers bear a disproportionately large share of the total
expense. This underscores the importance of accurately estimating and allocat-
ing battery-related costs in any practical deployment.
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Historical data for user demand and solar production were treated as known 
inputs. Future work will incorporate solar production forecasts from meteorolog-
ical models, develop predictive models for user demand, for example using deep 
neural networks, incorporate energy transmission losses or network charges for 
inter-building energy exchanges. In the present study, the optimization objec-
tive is the minimization of the total energy cost of all users. While this approac h
ensures overall system efficiency, it does not explicitly account for how costs and
benefits are distributed among individual participants. This can be addressed in
several ways, e.g., by using max-min fairness of [2]. 
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Abstract. Integrating the flexibility of small-scale assets into the redis-
patch process is a necessary measure for the reliable operation of future 
energy systems with high shares of renewable energy, flexible loads and 
battery storages, especially at low voltage levels. Market-based procure-
ment of redispatch flexibility from such assets is a useful complement to 
the existing process, enabling a scalable solution that reduces complex-
ity for grid operators by decentralizing operations and pooling assets 
through aggregators. We present the novel flexibility model BASE for 
household-level assets that is tailored to this use case. The model pro-
vides fundamental features and principles, but the calculation method 
may differ for different asset types. This is demonstrated by detailing 
the calculation methods for battery storages and heat pumps. The model
enables efficient local computation on edge hardware, and can be used to
generate optimized aggregated redispatch offers in a flexibility market.
Intelligent aggregation facilitates offers that leverage the heterogeneity of
the asset pool, thereby conferring a substantially greater degree of flex-
ibility compared to that achievable through individual flexibility offers.
The conceptual extension to other types of flexible plants is planned for
future research.

Keywords: decentralized redispatch · small-scale flexibility · 
multi-agent system

1 Introduction 

The increasing deployment of small-scale assets in the energy system introduces 
new opportunities and challenges for grid management [8]. These assets, includ-
ing distributed generation sources such as distributed generation sources such 
as systems, Heat Pumps (HPs), Battery Energy Storage Systems (BESSs) a nd
Electric Vehicles (EVs), contribute to enhanced system flexibility by adjusting
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their power generation or consumption dynamically in response to grid con-
ditions, market signals, or operational constraints. However, their integration 
poses challenges for network operators, who are responsible for maintaining grid 
stability . Traditionally, redispatch measures have been used to mitigate conges-
tion and ensure stable system operation [5]. Yet, with the growing number of 
small-scale assets, redispatch p rocesses become increasingly complex, requiring
scalable solutions [9, 10]. 

To address these challenges, a partially market-based redispatch is currently 
discussed for the practical implemen tation of the so-called Redispatch 3.0 in
Germany [1]. An agent-based system design to facilitate the flexibility calculation 
of small assets on-the-edge and to aggregate individual fl exibilities of a pool of
assets is proposed by Hess et al. [9]. However, the challenge of effective flexibility 
calculation and aggregation methods that fully leverage pooling effects and meet
market restrictions remains.

In this paper, we present an effective method to model and aggregate power 
flexibilities of small-scale assets, tailored specifically for application in a market-
based redispatch. Our approach allows for effective flexibility aggregation while 
ensuring compliance with market requirements. Furthermore, we provide a com-
parative analysis of our method against an alternative aggregation strategy. This
comparison illustrates the advantages of our approach, as it demonstrates the
ability to leverage the full range of pooled flexibility while aligning with market
restrictions.

The paper is organized as follows: First, we introduce the use case under 
consideration, including the market design and the resulting requirements for 
flexibility modeling. We then give a brief overview of existing flexibility models 
and explain why they are not suitable for the specific use case. Next, we present 
the generic baseline optimization at the household level, the flexibility model 
called BASE - illustrated by t wo types of assets - and aggregation and disaggre-
gation. This is followed by an illustrative example of flexibility at the household
level and a simulative evaluation at the aggregation level.

2 Setting 

Our approach to integrating small-scale power assets into the existing redispatch 
process in Germany is based o n a complementary market-based redispatch mech-
anism [1]. A simplified illustration of the setting, using an agent-based system 
design as proposed by Hess et al. [9], is illustrated in Fig. 1. 

Transmission System Operators (TSOs) and Distribution System Operators 
(DSOs) are responsible for maintaining grid stability. To achieve this, they con-
tinuously monitor planned power consumption and feed-in schedules (referred to 
as baselines). If congestion is anticipated based on these schedules, they act as 
buyers of power flexibility on a market platform. Power flexibility is provided by
Flexible Device Owners, who voluntarily offer the ability to adjust power con-
sumption or feed-in. The assets under consideration include BESSs, HPs and
EV pre-charging storages.



356 M. Radtke et al.

Fig. 1. Simplified activity diagram to illustrate the setting

Each flexible device is represented by a software agent called a Flexibil-
ityAgent. This agent is responsible for monitoring and controlling its associated
asset(s), computing a cost-optimal baseline .Pbase for those flexible assets, and 
determining the asset’s maximum potential deviations from this b aseline, which
constitute its flexibility potential .Pmin/max (see Sect. 5). 

Planning data – including the baseline schedule of the flexible assets and 
flexibility offers – are submitted to a Crowd Balancing Platform (CBP), which 
acts as a marketplace for flexibility trading. The CBP facilitates the registra-
tion of flexible assets, submission and processing of planning data, activation of
accepted flexibility offers, and the validation of flexibility provision.

Individual FlexibilityAgents interact with an AggregatorAgent,  an  interme-
diary entity that aggregates flexibility offers and baselines from multiple assets 
behind a s ingle grid connection point before submitting them to the CBP (for
details see Sect. 6). 

For valid participation in the CBP, the AggregatorAgent must comply with 
specific market rules, which (among others) include Time Requirements (TRs)
and Data Format Requirements (DRs):

– TR1 Flexibility offers must be submitted before the Day-Ahead market. 
Planning data submission starts on Day D-7 at 11:00 a.m. and closes on
Day D-2 at 08:00 a.m.

– TR2 Flexibility offers start from eacht 15-minute interval but must cov er
one-hour intervals.

– TR3 Calculations for baseline and flexibility must be efficiently performed
on edge devices with limited computational resources.
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– DR1 Planning data must include the aggregated baseline schedule and flex-
ibilities for its flexible assets behind a grid connection point.

– DR2 The planning data must be provided at a 15-minute resolution.
– DR3 The aggregated baseline and flexibility must be provided as power val-

ues in watts (W).
– DR4 The flexibility values represent relative deviations from the baseline 

schedule (min/max power v alues for each interval).

This setting presents significant challenges, particularly in ensuring accurate cal-
culation and aggregation of flexibility in accordance with market requirements.

3 Related Work 

The concept of flexibility in energy systems has been explored from various 
perspectives in scientific literature. Degefa et al. [7] provide a comprehensive 
overview of the different definitions and characteristics of flexibility across the 
field, highlighting the div erse interpretations depending on stakeholder perspec-
tives.

Brandt et al. [3] conducted a systematic evaluation of flexibility modeling 
approaches for energy systems, focusing specifically on models capable of rep-
resenting flexibility in a unified form across different types of power devices.
The authors selected five approaches for detailed analysis: Flexibility Trin-
ity [17], Multienergy Node [6], Support Vector Data Description [4], OpenTUM-
Flex [13, 20], and FlexOffer [18]. 

The OpenTUMFlex model [13] shares similarities with our approach, defining 
flexibility as possible deviations from a cost-optimal baseline schedule. However, 
it does not fully address our requirements, as it does not meet the temporal 
requiremen t TR2 (one-hour intervals for flexibility offers). Furthermore, Open-
TUMFlex only contains a simple aggregation approach.

The FlexOffer model [18] serves as a generalized representation of flexibility 
that can be exchanged between different entities in a cellular energy system [2]. 
The primary goal is to provide a scalable, device-independent approximation of 
flexibility that retains most of the flexibility while being computationally efficien t
for aggregation and optimization. The application of FlexOffers to BESSs was
explored in [12]  and  to  HPs in [11]. Essentially, FlexOffers represent the energy 
available for consumption at each time slice modeled by a set of constraints, 
optionally including interdependencies between time slices. Since market offers 
must be power values in watts (DR3), the lack of explicit power bounds may 
result in infeasible offers without additional knowledge of the asset’s power limits. 
Due to this need for information on power restrictions (DR3) and the use of the
flexibility model to calculate a deviation from the baseline (DR4), Flexibility
Trinity, Multienergy Node and the Support Vector Data Description are also not
suitable for the use case.

Another related model is Amplify,  a  modeling  approach  b  y Tiemann et
al. [16]. It was designed specifically for multi-purpose usage of BESSs in a swarm 
context. It prioritizes primary applications (like peak shaving) while offering
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remaining flexibility for secondary applications and focuses on battery-centric 
flexibility calculation with emphasis on State of Charge (SoC) management. 
It has both an energy-bound and a power-bound representation. However, the 
approac h lacks an integrated aggregation methodology, which is essential for our
market-oriented use case.

Many approaches have also been taken to explicitly model the flexibility 
of HPs, mostly in combination with thermal s torage. Two examples are the
approaches of Steinle et al. [15]  and  You  et al. [19]. Both model the flexibility 
of HPs using operational constraints of the HP considering power and energy 
aspects, and comfort constraints related to the thermal energy demand of the 
household. We model HPs in the same way, but use this model as a basis to
retrieve flexibility in a generalized asset type independent form.

4 Baseline Optimization 

The optimization of the baseline on the household level is the first step in our 
approach. It is a linear or non-linear optimization problem, depending on the 
involved assets. Considered assets are non-flexible PV-plants and flexible BESSs 
and HPs as well as a combination of these. We always aim to find a cost-optimal 
schedule that fulfills the demands of the household. For power consumption we
either assume a fixed price or a dynamic tariff that depends on the day ahead
spot market prices (.jc(i)). The assumed feed-in remuneration (. jf ) is based on 
the current German tariff for PV systems with partial feed-in. The demand of 
the household may be electrical and/or thermal energy. The thermal demand
.Pth,d(i) is only considered if a HP is involved, while electricity demand . Pel,d(i)
is always taken into account. We define our signs from the perspective of the 
grid connection point, i.e. feeding into the grid is positive and drawing energy 
from the grid is negative. Since we do not want to regulate the PV feed-in, we
consider the electrical household demand and the PV feed-in as the fixed power
values of the household, i.e. .Pfix(i) = Pel,d(i) +Ppv(i). The cost optimization is 
achieved by minimizing the objective function:

.C =

imax

i=1

⎡

⎣

⎛

⎝Pfix(i) +

|U|

u=1

Pu(i)

⎞

⎠ · Δt · jc(i) if Pfix(i) +
|U|
u=1 Pu(i) ≤ 0

jf else

⎤

⎦ (1) 

where .|U | is the number of flexible units that contribute to the power generation
or consumption of the household, and .imax is the maximum number of time 
intervals considered.

Flexible assets can include any asset that has some type of energy storage, 
such as BESSs, HPs, or EVs. If a HP is considered, we assume that the HP is 
operated in combination with a thermal storage tank to allow flexible opera-
tion. To further increase the flexibility, a continuous controllability of the HP is
required.

The constraints of the optimization problem arise from the technical restric-
tions of the flexible assets. The electrical power .Pu(i) consumed or provided by 
a flexible asset is restricted by maximal and minimal power values.
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The SoC must always be within its allowable limits, i.e. in .[0, 1]. For simplic-
ity, we assume that the thermal storage energy is equal to the sink temperature 
and that the storage is always perfectly mixed. The SoC of the thermal storage
is therefore 0 at the minimum temperature and 1 at the maximum permissible
temperature (as in [15, 19]). 

The power value .Pbase(i) in one time step affects the SoC value .Fbase in the 
next time step:

.Fbase(i + 1) = Fbase(i) − (Pbase(i) · η(i) − d(i)) · Δt

Ecap
(2) 

where .η(i) is an efficiency parameter. For a BESS it differs for charging and 
discharging. For HPs, it corresponds to the Coefficient of Performance (COP), 
which depends on the ambient and sink temperatures and thus varies over time.
The COP is calculated using linear modeling as in [15]. The demand .d(i) denotes 
a demand to be satisfied by the considered asset. For BESSs, it is usually 0, since 
the household’s electrical demand can be met by other sources, and the choice 
is part of the optimization problem. For HPs, however, the heat demand of the
household must be met by the HP in any case. .Ecap denotes the capacity of the 
storage that is used to normalize the Energy to SoC. For the HP it corresponds 
to the energy of the thermal e nergy storage, i.e. the water tank, when it has the
maximum allowed temperature.

To prevent premature aging of the system, for BESSs, the number of cycles 
per day is limited, and for HPs, frequent cycling (i.e., turning on and off) is 
penalized, while balanced operation is rewarded. In addition, there may already 
be redispatch obligations due to previous trading i n the redispatch market. This
results in fixed power values for certain time intervals that must be considered
in the baseline optimization.

5 Flexibility Calculation 

Optimizing the household baseline results in a schedule for each of the flexible 
assets that contributes to cost-optimal coverage of household needs. Since it is 
difficult to predict consumption at the individual household level, we offer the
aggregated baseline of the controllable units and their flexibility to deviate from
that baseline to the CBP (see Sect. 2). 

Flexibility calculations for individual assets must be performed on edge 
devices (TR3), taking into account technical constraints and local household 
demand. However, they are not yet required to comply with market restrictions. 
Instead, they must enable the efficient calculation of aggregated market offers 
while leveraging the potential of pooling heterogeneous assets. Therefore, we will 
first define several general principles that allow for the aggregation of flexibility.
Following this, we will delve into the specifics of calculating the flexibility of two
different asset types.
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Fig. 2. Overview on time window and variables in flexibility calculation

Basic Principles. Figure 2 illustrates the temporal relationships and basic 
structure o f the flexibility bands.

1. Flexibility spans over . z intervals and is calculated as a flexibility band con-
sisting of power values (.Pmin(t), Pmax(t)), with .t ∈ {1, . . . , z}. 

2. The individual flexibility bands contain absolute power values - not deviations
from the baseline.

3. Flexibility bands consider technical and comfort constraints.
4. An asset can perform any power value .P (t) between the b oundaries, i.e.

. Pmin(t) ≤ P (t) ≤ Pmax(t)
5. The calculation of successive time steps is always based on the maximum use

of flexibility in the previous time steps.
6. Unused flexibility potential can be transferred t o successive time steps
7. The baseline is considered

– by using the SoC of the baseline (.Fbase) at the beginning of eac h interval
. i, i.e. . F (t0) = Fbase(i)

– by constraining the flexibility bands such that the baseline values are fea-
sible at all time steps in . z, and thus the baseline falls within the flexibility
bands, i.e. . Pmin(t) ≤ Pbase(t) ≤ Pmax(t)

The resulting flexibility model is called BASE (Bounded A ggregatable Stateful
Edge Flexibility).

5.1 Battery Storage Flexibility 

For BESSs technical and baseline constraints can be represented and combined 
using SoC values. For the sake of clarity, only discharge flexibility is discussed 
below. Charge flexibility is calculated in the same way, taking into account the
corresponding efficiencies and SoC limit (maximum SoC = 1). Starting from
the SoC at an interval start . i determined by the baseline .Fbase(i) = Fmin

reach(0),
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the technically reachable SoC values are calculated. They can be achieved with 
maximum discharge power (.P dis

bat )  in  each  ti  me step:

.Fmin
reach(t + 1) = max(0, Fmin

reach(t) − P dis
bat · 1

ηdis
· Δt

Ecap
) (3) 

where .ηdis corresponds to the disch arging efficiency.
To ensure baseline power discharge requirements .P dis

base are met in the future, 
the  required  SoC bound .Fmin

req is calculated bac kwards:

.Fmin
req (t − 1) = max(0, Fmin

req (t) +
Δt

Ecap
· P dis

base(t)) (4) 

The most restrictive combination of reachable and required SoC results in the 
allowed SoC range for each interval . t: 

.Fmin(t) = max(Fmin
reach(t), F

min
req (t)) (5) 

Using the adjusted SoC bound .Fmin(t), the power flexibility for each interval . t
is calculated: 

.Pmax(t) =
Fmin(t − 1) − Fmin(t) · Ecap

Δt
· ηdis (6) 

5.2 Heat Pump Flexibility 

HP flexibility is largely modeled in the same way as BESS flexibility. One main 
difference is that the heat demand of the household mu st already be included
in the calculation of the technically feasible values. Thus, .Pmax represents the 
minimum power required to meet the heat demand and not drop b elow the min-
imum temperature of the tank. .Pmin indicates the maximum power that can be 
consumed without exceeding the maximum temperature of the tank (also taking 
into account the heat demand). Both values refer to power consumption and are 
therefore negative. Another difference is that the efficiency, i.e. the COP, depends 
on both the current sink temperature and the ambient temperature. S ince the
current state of the storage tank and thus the temperature is not known during
aggregation, we calculate the HP flexibility by assuming the most unfavorable
COPs for each direction. .COPmin(t) is the smallest COP and .COPmax(t) is the 
largest COP, both for time . t and thus the associated ambient temperature. The 
heat demand of a household .Pth,d(t) consists of space heating and domestic hot
water [19]. We assume that this heating demand, or a forecast of it, is given.

The basic calculation of the flexibility bands is performed sequentially for 
each time interval. First the COP is calculated, using a linear model as in [15]. 
With this input the upper and lower bound of the flexibility band c an be calcu-
lated for the next time step:

.Preq(t + 1) = Pth,d(t) − Ftes(t) · Ecap

Δt
· 1
COPmin(t)

(7)
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where .Ftes is the SoC of the thermal energy storage and thus . Ftes(t) · Ecap · 1
Δt

is the thermal power that can be generated by the discharge of that remaining
SoC. Using the worst efficiency (.COPmin(t)) results in the maximum electrical 
power required to achieve the r equired minimum thermal power.

.Pallo(t + 1) = Pth,d(t) +
(1 − Ftes(t)) · Ecap

Δt
· 1
COPmax(t)

(8) 

where .(1 − Ftes(t)) · Ecap
1

Δt is the thermal power that can still be absorbed by 
the storage tank until the maximum temperature (.Ftes = 1) is reached. Applying 
the highest efficiency (.COPmax(t)), the minimum electrical power that can result 
in the maximum allowable thermal power is obtained.

After calculating the value for .Preq or .Pallo, the SoC for the next time step 
can be determined (see Eq. 2). In this way, .Preq and .Pallo can be calculated 
successively. In every time interval it must be ensured that the required values
are technically feasible, i.e. that they lie within .[0, Pmax

hp ] , and encompass the 
power values in the baseline:

.Pmax(t) = min(Pbase(t), Preq(t), Pmax
hp ) (9) 

.Pmin(t) = max Pbase(t),min(Pallo(t), Pmax
hp ) (10) 

where .Pmax
hp is the maximal charging power of the HP. If .Pmax or . Pmin

differs from .Pallo respectively .Preq, the heat demand in the interval is either 
over- or under-fulfilled. Therefore, either more or less heat has to be generated 
in previous intervals. In this case, a backtracking algorithm first calculates the
unsatisfied heat demand .Pus

th,d(t) or the excess heat supply .P ex
th,s(t) (negative) 

that would result from the required power values .Pmax(t) or .Pmin(t). Again, the 
most unfavorable efficiency is assumed, i.e. the unsatisfied heat demand is max-
imized by the worst COP .COPmin(t) and the excess heat supply is maximized 
by the best COP .COPmax(t): 

.Pus
th,d(t) = Pth,d(t) − Pmax(t) · COPmin(t) − Ftes(t) · Ecap

Δt
(11) 

.P ex
th,s(t) = Pth,d(t) − Pmin(t) · COPmax(t) − (1 − Ftes(t)) · Ecap

Δt
(12) 

where .Ecap is the energy capacity of the thermal storage. At time step .t − 1,  all  
values are recalculated, using .Pth,d(t−1) = Pth,d(t−1)+Pus

th,d(t) or respectiv ely
.Pth,d(t−1) = Pth,d(t−1)+P ex

th,s(t) for Eqs. 7 and 8, but the original .Pth,d(t−1) for 
the SoC adaptation. If a valid solution is found in .t−1, the process continues with 
forward propagation. Then, the SoC in interval . t ensures that a valid solution 
exists. If problems arise due to the changed heat demand in step .t − 1, the heat 
demand is shifted to .t − 2, and so on. When the backtrac king algorithm reaches
time step . 0, the flexibility power value is set equal to the power value of the 
baseline, and the recursion is terminated. Thus, the baseline always remains as
a fallback for .Pmax and .Pmin, while ensuring that . Pmin(t) ≤ Pbase(t) ≤ Pmax(t)
for all . t. There is always a feasible solution, presuming a feasible baseline.



Agent-Based Flexibility Aggregation for a Distributed Redispatch 363

6 Optimization of Flexibility Pools 

The aggregator (see Sect. 2) optimizes the marketing of the pool of small-scale 
plants. This includes the aggregation and disaggregation of flexibility offers. 
Aggregation is an optimization problem, given the individual flexibility of each 
agent and the goal of finding the best combined offer for CBP. If a flexibility
offer is later called by a grid operator, the remaining offers can be recalculated,
allowing to make mutually exclusive offers.

Our notion of flexibility comprises two different aspects: the technically fea-
sible flexibility, represented by the flexibility bands, and the virtual flexibility, 
which results from the non-execution of the baseline. Furthermore, Aggregation 
is done separately in both directions. Due to space limitations, only the posi-
tive direction is described below. Negative aggregation is done analogously. The
objective is to maximize the offered power .Poffer over the product duration of
. z intervals and all . n agents: 

.Poffer =
n

a=1

z

t=1

P a
Δ(t) (13) 

where .P a
Δ(t) is the power deviation from the baseline of the agent . a in the interv al

. t. It is a deviation from the agent’s scheduled baseline power .P a
base(t).  This  is  

subject to a number of constraints. First, the values of the combined offer must
be equal over the full product duration of . z intervals: 

.∀t ∈ {1, . . . , z − 1} :
n

a=1

P a
Δ(t) =

n

a=1

P a
Δ(t + 1) (14) 

Second, the power values for each agent must lie within the bounds that are 
defined by the technical and virtual flexibility of this agent. The lower limit for 
the positive technical flexibility is zero which would correspond t o offer no flex-
ibility and perform the baseline. The upper limit is determined by the technical
constraint that the combination of .P a

Δ(t) and the baseline must remain below the 
maximum power limit of the asset. In addition, this limit may be e xtended by
unused technical flexibility from previous time steps .P a

tra(t). The general form ula
is:

.P a
Δ(t) ≤ va(t) · (P a

max(t) − P a
base(t)) + P a

tra(t) (15) 

In addition, virtual flexibility usage must be constrained to ensure future 
baseline feasibility. Thus, if the baseline has an alternate direction after . t
(.P a

base(k) < 0), .va(t) is always zero; otherwise, it is 1.
Thus, the first value chosen for the agent . a, i.e. .P a

Δ(0),  must  be  below  the  
maximum power flexibility in this time step .P a

max(0)−P a
base(0). The transferable 

flexibility .P a
tra(t) is defined as f ollows:

.P a
tra(t) =

t−1

k=1

P a
max(k) − min 0, P a

base(k) + P a
Δ(k) , P a

max(k) < 0,
P a

max(k) − max 0, P a
base(k) + P a

Δ(k) , P a
max(k) ≥ 0.

(16)
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where . P a
base(k) + P a

Δ(k) corresponds to the resulting schedule in i nterval
. k. If this value has the same sign as the flexibility limit .P a

max, the technical 
flexibility is reduced by this value, but the remainder can be transferred. If it 
has the opposite sign, t hen the virtual flexibility has been used in the interval.
Therefore, .P a

max(k) can be transferred entirely and added to .P a
tra. For BESSs it 

is always true that .P a
max ≥ 0 and for HPs it is true that .P a

max ≤ 0. 
After a flexibility offer has been requested by a grid operator, the aggregator 

has to allocate the redispatch obligations to the individual assets (see Sect. 2). 
For this, it uses essentially the same optimization as for aggregation. Additional 
constraints ensure that the targeted redispatch flexibility is achieved by the asset 
pool, while the objective aims to minimize costs. However, if the disaggregation 
problem is infeasible, e.g., due to short-term changes in flexibility or rescheduling
after a disturbance, cost minimization is neglected. Instead, the objective changes
to minimizing the cumulative deviation from the target instead of using hard
constraints.

7 Illustrative Example 

To illustrate the flexibility concept, we show the calculated baselines and fl exi-
bilities for an exemplary household in Fig. 3. The household has a 6.5 kW h BESS
(as in [9]) and a HP modeled according to the specifications in [19]. The two 
columns show the flexibility for two consecutive time steps. The electrical and 
thermal household demand is shown in the top row. For each of the two flexible
assets, the power flexibility (.Pmax, .Pmin) is plotted along with the SoC curve 
that would result from executing these power bands (SoC .Pmax,  SoC .Pmin). The 
baseline values are marked by the dashed lines. The figure illustrates that the 
flexibility power bands quickly lead to the respective SOC limits, while the base-
line values lie between them. When the baseline causes the SOC to be close to 
one of the limits, there is little flexibility left in that d irection, and the flexibility
power values are close to or identical to the baseline. In addition, flexibility can
change significantly from one time step to the next.

8 Comparative Case Study 

To evaluate the effectiveness of our approach, we conduct a comparative analysis 
against an alternative approach that directly aligns with market requirements 
at the household level. While our proposed method delays market restrictions 
until the aggregation phase to maximize p ooling effects, the alternative approach
implements market constraints directly during the initial flexibility calculation
at each individual agent at household level.

Our comparative case study is structured as follows: First, we describe the 
market-restricted approach that serves as our benchmark. Then, we detail our 
experimental setup, including the assets used, input configurations, and eval-
uation metrics. Finally, we present and discuss our results, focusing on both
effectiveness and scalability aspects.
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Fig. 3. Example for the baseline and BASE flexibility of a household with BESS and
HP in two consecutive time steps

8.1 Market-Restricted Power Flexibility Calculation 

In the market-restricted approach, flexibility is calculated to ensure compliance 
with market requirement TR2, which demands that power values remain con-
stant over the entire one-hour interval. This simplifies the aggregation process for 
the market platform, as individual flexibility offers already meet format require-
ments. However, this approach may not fully capture the true flexibility potential
of the assets.

For simplification, we again only consider discharge (maximum) power flexi-
bility .P̂max. For this, we first determine the energy requirement .Edis

base(i) of the 
baseline power schedule within the interval . i: 

.Edis
base(i) =

z−1

j=1

max(Pbase(i + j), 0) · Δt · 1
ηdis

(17) 

With this, we can then calculate the amount of energy s till available in the
storage:

.Edis
avail = max(0, Fbase(i) · Ecap − Edis

base(i)) (18) 

The available power is then giv en as:

.P dis
avail =

Edis
avail

Δt · z
· ηdis (19)
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The discharge flexibility is then calculated as:

.P̂max(i) = min(P dis
bat − Pmax

base , P dis
avail) (20) 

with .Pmax
base = maxt∈{1,...,z} Pbase(i + t) being the maximum discharge power in 

the baseline values during interval . i. This approach ensures that the offered 
flexibility is technically feasible and maintains a constant power value over the 
required market interval, simplifying integration with the market platform but
potentially limiting the pooling effects that could be achieved through more
sophisticated aggregation.

8.2 Scenario Set-Up 

The objective of our comparative analysis is to evaluate our aggregated flexibility 
offers with BASE according to two key requirements [9]: scalability (evaluating 
whether aggregation remains functional with increasing system sizes) and effec-
tiveness (determining how effectively individual flexibilities are used in the pool 
by comparing total offered flexibility b etween approaches). Both feasibility and
market-compatibility are met by design in both approaches.

For our study, we focus exclusively on BESSs to simplify the interpretation 
of the results. We use three different sizes of BESSs similar to the case study
in [9]. In the first phase of our analysis, we comprehensively tested all scenario 
configurations with smaller asset pools (10 and 100 assets) to assess effectiveness
across diverse real-world conditions:

1. Pricing s cenarios
– Constant : Constant prices throughout the planning horizon
– Incentive: Non-constant prices with incentives for charging or discharging

at specific times
2. Fixed power patterns (representing household load and PV generation)

– Equal cons/feed-in: Consumption equal to feed-in (no influence of the
household)

– One Peak: Higher consumption in one specific interval
– Higher cons/feed-in: Higher consumption or feed-in (alternating)
– Random Peak : Higher consumption in a random interval
– Random: Random power v alues

3. Battery state configurations
– Empty : All BESSs are initially empt y (SoC = 0)
– Full : All BESSs are initially full (SoC = 1)
– Random: Initial SoC values are equally distributed be tween 0 and 1
– Normal : Initial SoC values are normal distributed with a mean o f 0.5 and

a standard deviation of 0.25

In the second phase, we focused on scalability by increasing the asset pool to
1,000 and 10,000 assets using a representative subset of configurations.
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Fig. 4. Comparison of total flexibility range between the (BASE flexibility) optimized 
and market-restricted approaches across different pricing scenarios (left), battery SoC 
configurations (center), and power patterns (right) with 10 and 100 assets.

The simulation covered a three-day period with 15-minute intervals (288 
time steps total). We conducted our experiments on a standard server with 
4 CPU cores and 8 GB of memory. For solving the optimization problems, we
utilized the open-source CBC solver. Our agent system was built using the mango
framework [14] 1. 

8.3 Results 

In order to analyze the effectiveness across various scenarios, Fig. 4 illustrates 
the total flexibility range (difference between maximum a nd minimum flexi-
bility .Pmax − Pmin/ .P̂max − P̂min) achieved by both approaches. The figure 
presents a three-panel comparison highlighting the flexibility range across dif-
ferent conditions. In the first panel, we observe that the optimized approach 
consistently outperforms the market-restricted approach, with particularly sig-
nificant improvements under incentive pricing conditions compared to constant 
pricing scenarios. The center panel demonstrates how initial battery state config-
urations impact flexibility ranges. The optimized approach shows better perfor-
mance across all SoC configurations, with the most pronounced advantage occur-
ring in the “Normal” distribution scenario, where batteries start with normally 
distributed SoC values. This suggests that our approach effectively takes advan-
tage of heterogeneous battery states to maximize overall flexibility. The right 
panel analyzes p erformance across different power consumption and generation
patterns. Here again, the optimized approach consistently delivers greater flex-
ibility ranges, with particularly notable improvements in scenarios with higher
variability (“Random Peak” and “Random” patterns). This indicates that our
aggregation method is especially effective when managing diverse and dynamic
power profiles, precisely the conditions expected in real-world implementations.

The flexibility gains are most pronounced in scenarios with diverse initial SoC 
distributions and during periods with variable price signals, where the pooling
effect of coordinated aggregation can effectively leverage complementary battery

1 Source code: https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0. 

https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0
https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0
https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0
https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0
https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0
https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0
https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0
https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0
https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0
https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0
https://github.com/OFFIS-DAI/deer/releases/tag/v1.0.0
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Table 1. Average Calculation Times for different steps (in seconds). For the base-
line optimization and flexibility calculation, calculation durations are given for all 288 
interv als. The calculation duration of the aggregation is given for each interval.

Number of Assets Baseline Flexibility Aggregation 
10 0.203 0.004 0.075 
100 0.214 0.005 0.563 
1000 0.322 0.005 5.654 
10000 0.320 0.006 78.009 

states. This demonstrates that our approach is particularly valuable for real-
world implementations where asset heterogeneity is the norm rather than the
exception.

For computational performance, Table 1 presents the execution times for dif-
ferent components of the system across varying pool sizes. The results demon-
strate a clear architectural advantage: distributed components (baseline and 
flexibility calculations) show remarkable scalability with nearly constant com-
putation times regardless of pool size. This is achieved because each asset per-
forms these calculations independently using its own computational resources. 
In contrast, the centralized aggregation component exhibits approximately lin-
ear scaling with the number of assets, increasing roughly 10x with each order 
of magnitude in pool size. However, an aggregation of 10,000 assets should be 
considered a theoretical observation rather than a practical recommendation. 
In real-world implementations, an aggregator would likely organize assets into
hierarchical sub-pools of manageable size, which would significantly reduce com-
putation times while preserving most of the flexibility benefits. Additionally,
commercial aggregation platforms would utilize more powerful computational
resources than our experimental setup, potentially enabling direct aggregation
of larger asset pools when necessary.

9 Conclusion and Outlook 

Integrating small-scale plants into redispatch is an important step toward creat-
ing resilient and flexible future energy systems. We have developed the efficient, 
edge-device-based flexibility modeling approach BASE that can account for and 
encapsulate local constraints and preferences. At the same time, it is suitable 
for effectively creating offers for a redispatch market at an aggregated level, 
thereby leveraging the advantages of a heterogeneous plant pool. We illustrated 
the calculation method for two types of assets: BESS and HP. Transferring the 
method to other types of assets with energy storage is part of our future work.
However, we will soon demonstrate the methodology in a field test with real
assets, including pre-charging storage systems for charging stations, which have
their own unique characteristics and specifications. We will also investigate the
suitability of the model for other flexibility applications, such as other energy
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markets or ancillary services. This will include modified aggregation mechanisms 
and targeted improvements in aggregation efficiency. 
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Abstract. Multi-agent-based simulations (MABS) of electric vehicle (EV) home 
charging ecosystems generate large, complex, and stochastic time-series datasets 
that capture interactions between households, grid infrastructure, and energy mar-
kets. These interactions can lead to unexpected system-level events, such as trans-
former overloads or consumer dissatisfaction, that are difficult to detect and explain 
through static post-processing. This paper presents a modular, Python-based dash-
board framework—built using Dash by Plotly—that enables efficient, multi-level 
exploration and root-cause analysis of emergent behavior in MABS outputs. The 
system features three coordinated views (System Overview, System Analysis, 
and Consumer Analysis), each offering high-resolution visualizations such as 
time-series plots, spatial heatmaps, and agent-specific drill-down tools. A case 
study simulating full EV adoption with smart charging in a Danish residential 
network demonstrates how the dashboard supports rapid identification and con-
textual explanation of anomalies, including clustered transformer overloads and 
time-dependent charging failures. The framework facilitates actionable insight 
generation for researchers and distribution system operators, and its architecture 
is adaptable to other distributed energy resources and complex energy systems. 

Keywords: Multi-agent simulation · data visualization · electric vehicles · 
dashboard · smart grid · emergent behavior 

1 Introduction 

Agent-Based Modeling (ABM) is a computational approach that simulates the actions 
and interactions of autonomous agents to analyze complex systems and emergent phe-
nomena [1]. By representing individual entities—such as households, vehicles, or mar-
ket participants—with distinct behaviors and decision rules, ABM enables the study of 
emergent phenomena that arise from local interactions. In practice, these models are 
often implemented as Multi-Agent-Based Simulations (MABS), where large numbers 
of agents operate within dynamic environments over time. MABS has become a widely 
used methodology for modeling complex socio-technical systems, generating rich, high-
resolution datasets that capture detailed temporal and spatial patterns across thousands
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of agents. While this granularity is essential for understanding emergent phenomena, 
it also introduces significant challenges: raw simulation outputs are typically stored in 
flat-file formats (e.g., CSV), resulting in data that is both voluminous and difficult to 
analyze without dedicated post-processing tools [2, 3]. Effectively interpreting these 
outputs requires advanced data processing pipelines and interactive visualization frame-
works that allow users to explore patterns, trace anomalies, and compare scenarios across 
multiple analytical levels. 

Within the energy domain, MABS are increasingly applied to simulate residen-
tial electricity networks—particularly in scenarios involving the widespread adoption 
of distributed energy resources such as electric vehicles (EVs), heat pumps, and solar 
photovoltaics. In these contexts, agent behaviors (e.g., charging, heating, or consump-
tion) are governed by heterogeneous rules and stochastic inputs, leading to complex 
and often unexpected system-level outcomes [4, 5]. A particularly pressing challenge 
arises in understanding the impacts of EV home charging on low-voltage distribution 
grids, where synchronized charging behavior can overload critical infrastructure compo-
nents such as 10/0.4 kV transformers [6]. Identifying the causes of such overload events 
requires not only aggregate system analysis but also the ability to drill down to individ-
ual agent behavior—examining charging schedules, departure times, battery states, and 
pricing signals in a temporally coherent manner. 

In response, this paper introduces a modular, Python-based dashboard framework 
for the interactive exploration of MABS outputs, with a specific focus on EV charging 
simulations in residential distribution networks. The system addresses the analytical 
gap between large, high-resolution simulation datasets and the need for interpretable, 
decision-support tools by providing: 

1. Automated transformation of raw outputs into optimized formats; 
2. a multi-page dashboard with interactive visualizations (e.g., time-series, heatmaps, 

spatial charts); and 
3. Coordinated drill-down capabilities for agent-level analysis and anomaly tracing. 

The contributions of this work are threefold: (i) a generalizable dashboard architec-
ture tailored to post-simulation analysis of MABS; (ii) a demonstration of its utility in 
diagnosing emergent behaviors in a full-year, high-frequency EV charging simulation; 
and (iii) methodological guidance for researchers applying visualization to complex sim-
ulation output data. As the use of MABS continues to expand in smart grid research, this 
work addresses a critical bottleneck: the lack of accessible, scalable, and user-friendly 
tools for extracting actionable insights from rich agent-level simulations. 

2 Related Work 

MABS are increasingly used to study complex socio-technical systems, including 
energy transitions, EV charging ecosystems, and smart grid interactions. These sim-
ulations generate high-frequency, multivariate datasets that are often difficult to analyze 
using static post-processing alone. Recent literature has emphasized the importance of 
advanced visualization and interactive tools to support analysis, communication, and 
decision-making in such contexts [2].
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2.1 Visualization in Energy and Mobility ABMs 

Visualization has long played a central role in helping researchers and stakeholders inter-
pret ABM outputs. In energy and mobility domains, geospatial, temporal, and network-
based displays are commonly used to illustrate emergent patterns at multiple scales. 
For example, in energy adoption studies, spatial heatmaps are used to show geographic 
clustering of distributed energy resources such as solar panels or EV chargers [3]. In 
mobility models, vehicle flows or traveler trajectories are often mapped in 2D or 3D 
to highlight congestion zones or behavioral trends [2, 7]. These approaches help link 
individual agent behaviors to system-level phenomena but often rely on preconfigured, 
static visualizations. 

Several tools—commercial (e.g., AnyLogic) and open-source (e.g., GAMA, 
Repast)—support embedded GIS integration and agent mapping [8], enabling visual 
overlays of model outcomes on real-world geography. However, these tools are often 
tied to their simulation runtime environments, limiting post-hoc, drill-down exploration 
flexibility. More recent efforts have addressed this by developing specialized analysis and 
visualization frameworks that separate simulation and evaluation layers. For instance, 
AgentLens introduces a visual analytics system for exploring Large Language Model-
based agent behaviors through temporal decomposition and traceable cause–effect map-
ping [9]; Similarly, AgentPy [10] offers interactive exploration of agent behaviors in 
Python environments using dynamic charts and live controls. These systems reflect a 
growing trend toward flexible, post-simulation visualization tools, as also pursued in 
this work. 

2.2 Temporal and Interactive Visualization Approaches 

Given the time-evolving nature of MABS outputs, time-series plots and animations 
are widely used to trace system dynamics such as energy demand, charging load, or 
emissions profiles [11]. Animated replays can highlight spatio-temporal behavior— 
e.g., EV charging peaks during nighttime hours or dissatisfaction events triggered by 
scheduling conflicts. However, raw animations often lack analytical precision, and static 
plots can obscure agent-level variability. 

Recent work advocates for more interactive visualization frameworks capable of 
linking system-level metrics to individual agent actions. For instance, Grignard et al. 
[12] propose “Agent-Based Visualization”, where visual elements are treated as agents 
in their own right, enabling immersive inspection in 3D environments. Similarly, the 
GAMA and Mesa platforms offer browser-based interfaces that support real-time charts, 
parameter manipulation, and filtering of agents [11]. 

Despite these advances, the literature reveals persistent gaps in post-simulation anal-
ysis tools for MABS, especially in energy domains with large agent populations and 
high temporal resolution. Many studies report only aggregate system Key Performance 
Indicators (KPIs) (e.g., total load, average emissions) with limited ability to diagnose 
specific emergent events, such as transformer overloads or charging failures. Moreover, 
few tools support drill-down analysis that traces a system-level anomaly to its underly-
ing causes—such as the behavior of specific EVs, their state-of-charge, trip history, or 
charging strategy.
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2.3 Need for Scalable, Multi-level Exploration Tools 

This paper addresses this gap by introducing a dashboard framework tailored for agent-
level post-simulation analysis of EV-grid interactions. Unlike embedded visualization 
modules or static reporting tools, our approach supports synchronized exploration across 
system, transformer, and consumer layers. It enables researchers and distribution system 
operators (DSOs) to explain emergent, high-impact events by interrogating time-aligned 
data streams at multiple levels of granularity. This type of analysis—currently under-
represented in the literature—is essential for interpreting complex charging ecosystems 
and guiding future energy policy and infrastructure design. 

Despite these advances, a gap remains in tools that support post-simulation explo-
ration of high-frequency, stochastic energy data at multiple analytical levels. Many stud-
ies emphasize aggregate KPIs but lack support for tracing emergent phenomena to spe-
cific agent behaviors—e.g., transformer overloads caused by clustered EV charging. 
This paper addresses this gap through a modular dashboard tailored for synchronized, 
agent-level investigation. 

3 Case Study: EV Home Charging 

The dashboard framework is applied to a MABS of an EV home charging ecosystem in 
the Danish residential network of Strib, comprising 126 consumer nodes. The underlying 
model and simulation environment are based on the laxity-based aggregation strategy 
proposed in [6]. For this demonstration, the scenario assumes 100% EV adoption with 
smart charging behavior, where vehicles attempt to charge during periods of lowest elec-
tricity price. The simulation spans a full calendar year (2025) with a temporal resolution 
of one minute. 

In such high-resolution, agent-driven simulations, emergent behaviors—such as 
transformer overloads, suboptimal charging, or consumer dissatisfaction—are common 
and often non-trivial to diagnose through static or aggregate analyses alone. Under-
standing the root causes of these phenomena requires layered insight across multiple 
dimensions of agent behavior. For example, explaining a specific overload event involves 
identifying which EVs were actively charging at the time, and further drilling down into 
each consumer’s behavior, including their driving patterns (i.e., distance driven before 
and after the event), charging schedules, EV model specifications (battery capacity and 
charging power), state-of-charge (SoC) upon arrival, baseload consumption, and respec-
tive arrival and departure times. The dashboard enables precisely this kind of structured, 
drill-down investigation—turning what would otherwise be an opaque anomaly into an 
interpretable, data-driven narrative. By making such analysis intuitive and reproducible, 
the tool bridges the gap between raw simulation output and actionable insight. 

The MABS model employed here is adopted from [6], which presents a laxity-based 
EV aggregation strategy aimed at minimizing charging costs while avoiding transformer 
overload. The model simulates individual households with varying baseload consump-
tion, EV models, and trip profiles, and it incorporates a smart charging mechanism that 
shifts demand to low-price periods. The outputs from this simulation—covering variables 
such as charging load, SoC, arrival and departure times, and grid stress indicators—serve
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as the primary input to the dashboard framework described in this work. Readers are 
referred to [6] for detailed modeling assumptions and algorithmic descriptions. 

4 Dashboard System Architecture 

The presented dashboard framework is implemented using Dash by Plotly, a Python-
based web application framework specifically designed for creating interactive, analyt-
ical dashboards. This choice was driven by several key considerations: 

Tight Integration with Python and Plotly. Dash is natively built for Python, making 
it highly compatible with the broader Python ecosystem used for data processing and 
scientific computing (e.g., Pandas, NumPy, and PyArrow). Most critically, it leverages 
Plotly.js under the hood—a robust, open-source JavaScript graphing library that supports 
high-quality, publication-ready interactive visualizations. This ensures that the dash-
board can seamlessly generate time-series plots, heatmaps, and geospatial charts with 
full interactivity, pan/zoom, and export support directly from Python without needing 
separate front-end code. 

Web-Native Architecture for Flexible Deployment. Dash applications are rendered 
as HTML/CSS/JavaScript in the browser, meaning they are web-native by design. This 
architecture facilitates platform-independent deployment on local machines, intranets, 
or cloud services (e.g., Heroku, AWS, or internal servers). Because the entire interface 
is defined in Python, it simplifies development for teams that may not have front-end 
developers, while also enabling easy adaptation for broader access via browser-based 
tools. 

Modularity and Customization. Dash supports a modular, callback-driven design, 
which is essential for building coordinated multi-view layouts (e.g., linking maps with 
time-series plots or enabling drill-down analysis from KPIs to agent-level charts). Fur-
thermore, it supports plug-ins like Dash Bootstrap Components for more advanced 
layouts and styling, aligning with the needs of a professional-grade visualization tool. 

Selecting the appropriate framework for building an interactive analytical dashboard 
is a critical design decision, particularly in simulation-heavy domains such as energy 
systems and smart grids. The dashboard must support not only visually compelling 
plots, but also the ability to handle large volumes of high-resolution, agent-level data 
and provide flexible, responsive interactivity for exploration and insight generation. To 
contextualize the selection of Dash by Plotly, this section compares it against several 
other commonly used dashboard development tools—Power BI, Tableau, Streamlit, and 
Shiny—across a range of technical and practical dimensions. These include language 
environment, visualization capabilities, interactivity, scalability, deployment options, 
and fit for scientific simulation use cases. 

A comparison overview can be found in Table 1 in the Appendix. The comparison 
illustrates that while tools like Power BI and Tableau excel in business intelligence 
applications, they are generally less suited to the demands of scientific simulations 
and domain-specific analytics. These platforms offer limited customization, are tightly 
coupled to proprietary ecosystems, and are optimized for tabular data rather than large-
scale, time-resolved agent-based simulations.
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Streamlit and Shiny offer more flexibility for technical users and are well-suited for 
prototyping and lightweight applications. However, their simplicity can be a limitation 
when building multi-page, highly coordinated dashboards with complex user interactions 
and visual hierarchies. 

In contrast, Dash by Plotly provides the best alignment with the project require-
ments: it is Python-native, integrates directly with the scientific computing stack (e.g., 
Pandas, Plotly, NumPy), supports scalable deployment through web-native rendering 
(HTML/CSS/JavaScript), and offers extensive customization through callback-driven 
logic and modular components. Its interoperability with Plotly ensures high-quality, 
publication-ready visualizations that can be exported in SVG format for reporting or 
academic use. These features collectively make Dash an ideal choice for simulation 
practitioners who need fine-grained control over data exploration, agent-level insight, 
and visual storytelling within the context of energy systems modeling. 

The dashboard’s architecture follows visualization design principles proposed by 
Munzner [13], emphasizing domain-driven task abstraction and coordinated visual 
idioms aligned with multi-agent simulation data. To support this structure and aid under-
standing of the dashboard’s structural organization, Fig. 1 presents a high-level archi-
tecture diagram of the system. It illustrates the transformation flow from raw simulation 
outputs through data processing components to the coordinated visualization views, 
highlighting the modular design and interaction between back-end scripts and front-end 
dashboard elements. 

Fig. 1. System architecture of the dashboard framework. 

4.1 Data Processing Pipeline 

Simulation outputs are generated as CSV files, containing, among others, agent-level 
time series data for baseload consumption, EV consumption, EV battery State-of-Chart 
(SoC), CO2 emissions, electricity prices, and network tariffs. The data pipeline consists 
of multiple Python modules imported into a central app.py file:

• data_processing.py reading data files, formatting time columns, calculating system 
metrics used as KPIs in the dashboard, and includes a suite of utility functions for 
preparing specific visualizations.
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• dashboard_layout.py contains all Dash layout definitions, organizing the interface 
into modular, responsive sections. The layout utilizes the Dash Bootstrap Components 
to more easily build consistently styled apps with complex, responsive layouts.

• graph_generator.py includes all functions for generating line charts, heatmaps, and 
bar plots.

• map_creator.py defines and updates spatial visualizations using 
plotly.express.scatter_map library, enabling location-based filtering and drill-down 
functionality. 

Dataframes that are created from scratch from the simulation data, such as departure 
and arrival times, are preprocessed into Parquet format using Pandas to reduce memory 
footprint and accelerate load times, especially for repeated visual queries. 

CSV was chosen as the simulation output format due to its simplicity and com-
patibility with existing tools. To mitigate memory and performance limitations, large 
datasets are converted to columnar Parquet files using Pandas, enabling faster loading 
and selective querying. While no in-memory caching is used in the current version, 
future enhancements will explore query engines like DuckDB for on-disk filtering. 

4.2 Dashboard Design 

The dashboard interaction model reflects Shneiderman’s information-seeking mantra 
[14], supporting ‘overview first, zoom and filter, then details-on-demand’ through the 
three-layer interface. Therefore, the front end, built using Dash by Plotly, comprises 
three presentation views, as described in the following. 

1) System Overview 

KPI Summary Cards: The top of the dashboard page in Fig. 2, displays global metrics 
such as transformer overload duration, first overload date, load factor, coincidence factor, 
total dissatisfaction events, average charging cost (DKK/kWh), average CO2 emissions 
(kg/kWh), and DSO tariff revenue. Furthermore, the KPIs show the percentage difference 
for a reference scenario for easy comparison. The KPIs include a percentage difference 
relative to a baseline scenario when provided. Users can load a reference scenario via a 
file input, enabling dynamic comparison across key performance indicators. Differences 
are displayed as percentage changes while relevant graphs include an overlay of reference 
scenario, streamlining comparative scenario analysis. 

Spatial Map: Shows agent locations color-coded by selected parameter (e.g., total 
electricity expenses, EV charging load, dissatisfaction count) as shown in Fig. 3. Clicking 
a point triggers a table with detailed information about the user. The map shows the 
statistics for the current selection with the sum, maximum, mean, and minimum for the 
system. 

Transformer Load Chart: Aggregated load time series with capacity threshold indi-
cated. The investigation of the system concerns the loading of the transformer and is 
therefore chosen to be located on the System Overview (bottom right in Fig. 2). 

Load and Charging Information Chart: A chart (Fig. 4) showing in one graph the 
correlation between aggregated baseload, charging load, total load, electricity prices,
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Fig. 2. The dashboard’s system overview. 

Fig. 3. Spatial map of the simulated system. 

the number of charging EVs, and the transformer capacity. This chart has a feature 
implemented enabling clicking on the bars for the number of charging EVs, which will 
show on the map the consumers charging at that specific point in time. This allows for 
easy access to consumer information at specific times in case some behavior requires 
deeper insights. 

2) System Analysis 

Time-Series Views: Number of charging EVs; baseload; electricity price breakdown 
(spot, DSO tariff, total); CO2 emissions as seen at the top of Fig. 5.
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Fig. 4. Aggregated system load, EV charging load, baseload, electricity price, and number of 
charging vehicles over time. Clicking a bar displays consumer-level data on the spatial map. 

Daily Heatmap: EV charging load per user for a selected date, as shown in Fig. 6.  The  
heatmap shows the charging load (color code) at time (x-axis) for all 126 users in the 
system (y-axis).

Arrival/Departure Bar Chart: Displays counts per time bin with hoverable agent IDs 
for anomaly tracing and is shown in Fig. 7. 

Overload Distribution: Shows frequency of loading categories based on IEC 60076-
7  [15] (Normal cyclic: 100–150%, Long-time emergency: 150–180%, Short-time 
emergency: 180–200%, Critical: >200%) and is shown in Fig. 8. 

Fig. 5. The dashboard’s System Analysis view page.
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Fig. 6. Zoomed version of heatmap. 

Fig. 7. EV arrivals and departure graph. 

Fig. 8. Distribution of transformer overload types. 

3) Consumer Analysis



A Visualization Framework 381

Agent Selection Input: Text box for specific user ID, as shown in Fig. 9.  From  the  
System Overview page there is a button that automatically inserts the selected consumer 
(in the map) to the selection in Consumer Analysis page for fast access to information.

Charging Load Step Chart: User charging schedule with departure/arrival markers 
as shown in Fig. 10. This graph includes an optional reference overlay if selected from 
program initialization. 

Baseload, Driving Distance & SoC Charts: Step charts showing the baseload con-
sumption, daily driving distance of the consumer, and the SoC of the EV battery through-
out the simulation. The SoC chart includes the feature highlighting days with insufficient 
charging level before departure, resulting in dissatisfaction. This is shown in Fig. 11, 
with the red cross added to each datapoint for the day with insufficient charge. The 
explanation for this unexpected behavior is found in a mismatch between the smart 
charging algorithm’s handling of dates and the simulation dates when experiencing a 
change between summer and winter time. 

All visualizations support pan, zoom, and have an export button for high-resolution 
SVG, with a “publication mode” to enlarge fonts and line styles for use in reports and 
articles. The publication mode has been used for all individual figures in this paper. 

Fig. 9. The dashboards’ Consumer Analysis view page. 

4.3 Case Study Highlights

• Frequent overload events: The correlation between the number of EVs at home, 
cheap electricity prices, and smart charging behavior results in daily overloads, with 
16% of 587 h of overload being critical (>200%).

• Unwanted user dissatisfaction: An analysis of user dissatisfaction events revealed 
that mismatches in daylight saving time transitions between the smart charging algo-
rithm and simulation timestamps led to insufficient EV charging. This highlights the 
importance of consistent temporal alignment in simulation pipelines

• Low utilization of existing capacity: The low load factor indicates a very uneven 
distribution of the load, and the high coincidence factor confirms that many consumers 
locate their maximum load in the same period.
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Fig. 10. Charging schedule for individual consumer analysis. 

Fig. 11. SoC of individual EV batteries. 

A deep understanding of the highlighted results above was rapidly identified and 
contextualized through synchronized dashboard views, which would have been difficult 
to detect with static scripts. 

The dashboard supports both researchers and DSOs in analyzing scenario perfor-
mance and investigating unexpected system behaviors. While the tool itself offers a 
shared set of indicators and interactive views, its application depends on the simulated 
scenario and user objective. For example, a DSO might explore grid impact under differ-
ent tariff schemes, while a researcher could examine behavioral responses or test control 
strategies. In both cases, the dashboard facilitates decision support by making complex 
results more accessible. 

5 Discussion 

The proposed dashboard framework facilitates comprehensive analysis of complex out-
puts from MABS, enabling both system-level pattern recognition and detailed investiga-
tion of agent-specific anomalies. By prioritizing the identification and interpretation of
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emergent behaviors—such as localized transformer overloads or user-level dissatisfac-
tion events—the tool provides researchers and distribution system operators with a prac-
tical means to derive actionable insights. This is particularly valuable when evaluating 
the effectiveness of strategies like time-of-use tariffs or controlled charging schemes. 

A key strength of the framework lies in its integration of high-resolution interactive 
visualizations with a domain-specific data processing backend. Users can explore large 
volumes of stochastic simulation data through synchronized views that support anomaly 
detection and root-cause analysis without extensive manual preprocessing. 

The dashboard supports both researchers and DSOs in analyzing scenario perfor-
mance and investigating unexpected system behaviors. While it offers a shared interface 
and consistent indicators, its application varies by user objective. For instance, DSOs 
may focus on infrastructure stress under different tariff schemes, while researchers might 
examine behavioral adaptations or validate control strategies. This flexibility enhances 
the tool’s value across both operational planning and academic exploration. 

However, the framework does have limitations regarding data volume. In its current 
implementation, the dashboard has been tested with datasets comprising 1-min resolution 
measurements over a one-year simulation period, producing CSV files of approximately 
8 GB per scenario. Despite the substantial size, the dashboard performs reliably after 
the initial loading phase, including when comparing two full scenarios (e.g., baseline 
and test case). 

As simulation scales increase—whether in temporal resolution, spatial granularity, or 
model complexity—future work should consider integrating efficient, queryable storage 
solutions such as DuckDB or similar in-process analytical databases. These would enable 
on-demand filtering and aggregation directly on disk, thereby reducing memory overhead 
and improving responsiveness for larger datasets. 

Overall, the framework offers a scalable foundation for exploratory analysis of com-
plex MABS outputs, and its modular design supports future enhancements both in 
terms of data volume handling and extended visualization capabilities. For example, 
in the case study, the modular structure allows for simple extension to other distributed 
energy resources (e.g., home batteries, heat pumps), further increasing the dashboard’s 
relevance. 

While formal usability evaluation is pending, early informal feedback from internal 
stakeholders highlighted the value of the dashboard’s layered navigation and drill-down 
capabilities. A structured validation process is planned, including direct involvement of 
external stakeholders, such as DSOs, to assess usability, interpretability, and operational 
impact. Future evaluations will follow established protocols such as heuristic analysis 
and the System Usability Scale, supporting iterative improvements and more robust 
validation of the tool’s decision-support effectiveness. 

6 Conclusion 

This paper introduced an interactive dashboard framework tailored for analyzing out-
puts from multi-agent-based simulations (MABS) of electric vehicle (EV) home charg-
ing ecosystems. The tool enables researchers, distribution system operators (DSOs),
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and energy planners to explore complex, high-frequency simulation data across mul-
tiple analytical levels—from system-wide metrics to individual user behavior—using 
coordinated visualizations and agent-level drill-downs. 

By focusing on emergent phenomena rather than raw computational performance, the 
framework supports the identification and contextual explanation of unexpected system 
behaviors, such as clustered transformer overloads or spikes in consumer dissatisfaction. 
This capability is critical in domains where stochastic agent interactions and temporal 
flexibility lead to highly dynamic outcomes that are difficult to trace using traditional 
static plots or aggregated indicators. 

The architecture leverages a modular Python backend and Dash by Plotly for 
front-end interactivity, with efficient data preprocessing strategies to manage year-
long, minute-resolution datasets. Through a detailed case study, the dashboard was 
shown to rapidly uncover system inefficiencies, behavioral anomalies, and potential 
mismatches in temporal logic—insights that would be challenging to obtain through 
manual script-based analysis alone. 

While current limitations include data scalability and visualization support for non-
EV distributed energy resources, the framework is designed for extensibility. Future 
work will incorporate additional distributed energy resource types such as photovoltaic 
systems, household batteries, and heat pumps, already present in the simulation engine 
but not yet visualized. Furthermore, integration with query-optimized data handling 
(e.g., DuckDB or Apache Arrow) is planned to support the exploration of even larger 
and more complex simulation scenarios. 

Overall, the dashboard lowers the barrier to high-resolution exploratory analysis 
of MABS outputs and serves as a practical decision-support tool for evaluating the 
effectiveness of smart grid interventions in complex, agent-driven systems. 

Acknowledgement. This paper is part of the project titled “Automated Data and Machine 
Learning Pipeline for Cost-Effective Energy Demand Forecasting in Sector Coupling” (jr. Nr. 
RF-23-0039; Erhvervsfyrtårn Syd Fase 2), The European Regional Development Fund. 

Appendix

Table 1. Dashboard tool feature comparison between popular tools. 

Feature Dash by Plotly [16] Power BI [17] Tableau [18] Streamlit 
[19] 

Shiny [20] 

Languages Python, R, Julia Power Query (M), 
DAX, supports 
Python/R scripts 

Drag & drop 
UI, VizQL; 
R/Python via 
extensions 

Python R (original), 
Python (new) 

Visualization 
Engine 

Plotly.js 
(HTML/SVG/WebGL); 
deeply integrated 

Microsoft proprietary 
engine 
(TypeScript/HTML) 

VizQL + 
Hyper engine 

Vega-Lite, 
Plotly, 
Matplotlib, 
etc. 

ggplot2, Plotly, 
htmlwidgets, Vega, 
Leaflet 

Interactivity High: callback-driven, 
multi-page, fully 
programmable 

High: dashboard 
filters, drill-throughs 

High: filters, 
parameters, 
tooltips 

Medium: 
script reruns 
on input 

High: reactive 
model, dynamic UI

(continued)
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Table 1. (continued)

Feature Dash by Plotly [16] Power BI [17] Tableau [18 ] Streamlit
[19 ]

Shiny [20]

Scientific Use 
Fit 

Excellent: MABS, time 
series, system modeling 

Limited: Business 
KPIs; less flexible for 
research 

Moderate: 
supports 
R/Python, but 
GUI-bound 

Good: fast 
for 
prototyping, 
but limited 
structure 

Excellent: highly 
used in 
academic/statistical 
apps 

Data Volume 
Handling 

Good: needs 
pre-processing/parquet 
for large data 

Very high (with 
Premium/DirectQuery) 

High (Hyper 
extracts or live 
DB 
connections) 

Moderate: 
in-memory; 
backend 
scaling 
needed 

Moderate: 
in-memory limits; 
scale with DBs 

Deployment Self-hosted (Flask), 
Dash Enterprise 
(proprietary) 

Microsoft ecosystem: 
Desktop, Cloud, 
Report Server 

Tableau Server, 
Cloud, Public 

Local, 
Docker, 
Streamlit 
Cloud 

Shiny Server 
(open-source), 
RStudio Connect 
(pro) 

Licensing Open-source SDK 
(MIT); proprietary 
hosting optional 

Proprietary (no 
open-source 
components) 

Proprietary 
(owned by 
Salesforce) 

Fully 
open-source 
(Apache 
2.0); cloud 
service 
optional 

Open-source 
(GPL/MIT); 
commercial hosting 
optional 

Learning 
Curve 

Moderate: Python + 
callback logic 

Low–moderate: 
GUI-based, Excel-like 

Low–moderate: 
visual 
modeling, 
Tableau calc 
lang 

Very low: 
basic 
Python 
scripting 

Moderate: easy to 
start, advanced 
logic requires 
understanding 
reactivity 

Customization 
& 
Extensibility 

Very high: HTML/CSS, 
JS, React components 

Limited to 
prebuilt/custom visuals 

Moderate: 
themes, 
extensions API 

Moderate: 
layout 
primitives, 
custom 
components 

Very high: full 
HTML/CSS/JS 
control 

References 

1. Epstein, J.M., Axtell, R.: Growing artificial societies: Social science from the bottom up 
(Complex adaptive systems.). Brookings Institution Press, Washington, D.C. (1996) 

2. Lee, J.-S., et al.: The complexities of agent-based modeling output analysis. J. Artif. Soc. 
Soc. Simul. 18(4) (2015). https://doi.org/10.18564/jasss.2897 

3. Akhatova, A., Kranzl, L., Schipfer, F., Heendeniya, C.B.: Agent-based modelling of urban 
district energy system decarbonisation—a systematic literature review. Energies 15(2), 554 
(2022). https://doi.org/10.3390/en15020554 

4. Mehdizadeh, M., Nordfjærn, T., Klöckner, C.A.: A systematic review of the agent-based 
modelling/simulation paradigm in mobility transition. Technol. Forecast. Soc. Change 184 
(2022). https://doi.org/10.1016/j.techfore.2022.122011 

5. Weinberger, G., et al.: Spatial agent-based modelling and simulation to evaluate on public 
policies for energy transition. In: Proceedings of the 3rd International Sustainable Energy 
Conference (ISEC 2024) (2024) 

6. Christensen, K., Jørgensen, B.N., Ma, Z.G.: A multi-agent, laxity-based aggregation strat-
egy for cost-effective electric vehicle charging and local transformer overload prevention. 
Sustainability 17(9), 3847 (2025). https://www.mdpi.com/2071-1050/17/9/3847

https://doi.org/10.18564/jasss.2897
https://doi.org/10.3390/en15020554
https://doi.org/10.1016/j.techfore.2022.122011
https://www.mdpi.com/2071-1050/17/9/3847


386 K. Christensen et al.

7. Malleson, N., Heppenstall, A., See, L., Evans, A.: Using an agent-based crime simulation to 
predict the effects of urban regeneration on individual household burglary risk. Environ. Plan. 
B Plan. Des. 40(3), 405–426 (2013). https://doi.org/10.1068/b38057 

8. Bastarianto, F.F., Hancock, T.O., Choudhury, C.F., Manley, E.: Agent-based models in urban 
transportation: review, challenges, and opportunities. Eur. Transp. Res. Rev. 15(19) (2023). 
https://doi.org/10.1186/s12544-023-00590-5 

9. Lu, J., et al.: AgentLens: visual analysis for agent behaviors in LLM-based autonomous 
systems. TVCG 31, 4182–4197 (2024). https://doi.org/10.1109/TVCG.2024.3394053 

10. Foramitti, J.: AgentPy: a package for agent-based modeling in Python. J. Open Source Softw. 
6(62), 3065 (2021). https://doi.org/10.21105/joss.03065 

11. ter Hoeven, E., et al.: Mesa 3: agent-based modeling with Python in 2025. J. Open Source 
Softw. 10(107), 7668 (2025). https://doi.org/10.21105/joss.07668 

12. Grignard, A., Drogoul, A.: Agent-based visualization: a real-time visualization tool applied 
both to data and simulation outputs. In: Proceedings of the AAAI-17 Workshop on Human-
Machine Collaborative Learning (AAAI Spring Symposium) (2017) 

13. Munzner, T.: Visualization Analysis and Design. A K Peters Visualization Series, 1st edn. A. 
K. Peters, Natick, MA, United States (2014) 

14. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualiza-
tions. In: Proceedings 1996 IEEE Symposium on Visual Languages, 3–6 September 1996, 
pp. 336–343 (1996). https://doi.org/10.1109/VL.1996.545307 

15. Power Transformers – Part 7: Loading Guide for Mineral-Oil-Immersed Power Transformers. 
International Electrotechnical Commission, Geneva, Switzerland (2018). https://studylib.net/ 
doc/25758704/iec60076-7%7Bed2.0%7Den 

16. Plotly: Dash by plotly documentation page. https://dash.plotly.com/. Accessed 17 May 2025 
17. Microsoft Power BI: Microsoft Power BI product page. https://www.microsoft.com/da-dk/ 

power-platform/products/power-bi?market=dk. Accessed 17 May 2025 
18. Tableau: Tableau web page. https://www.tableau.com/. Accessed 17 May 2025 
19. Streamlit: Streamlit web page. https://streamlit.io/. Accessed 17 May 2025 
20. Shiny: Shiny web page. https://shiny.posit.co/. Accessed 17 May 2025

https://doi.org/10.1068/b38057
https://doi.org/10.1186/s12544-023-00590-5
https://doi.org/10.1109/TVCG.2024.3394053
https://doi.org/10.21105/joss.03065
https://doi.org/10.21105/joss.07668
https://doi.org/10.1109/VL.1996.545307
https://studylib.net/doc/25758704/iec60076-7%7Bed2.0%7Den
https://studylib.net/doc/25758704/iec60076-7%7Bed2.0%7Den
https://dash.plotly.com/
https://www.microsoft.com/da-dk/power-platform/products/power-bi%3Fmarket%3Ddk
https://www.microsoft.com/da-dk/power-platform/products/power-bi%3Fmarket%3Ddk
https://www.tableau.com/
https://streamlit.io/
https://shiny.posit.co/


Author Index 

A 
Abouebeid, Sara II-173 
Aguayo, Cristian II-187 
Ahammer, Florian II-95 
Aiswarya, T. S. II-78 
Ajwani, Deepak II-271 
Akashi, Yasunori II-114, II-144, II-154 
Alaliyat, Saleh Abdel-Afou I-3 
Alex, A. II-78 
Al-Habaibeh, Amin I-198 
Amideo, Annunziata Esposito I-255 
Amini Toosi, Hashem II-221 
Amos, Matt II-321, II-338, II-371 
Ayyathurai, Vignesh Pechiappan I-95 

B 
Bansal, Ramesh C. I-309 
Becker, Robert A. II-285 
Beigaitė, Rita II-35 
Bengtsson, Gustaf II-321, II-338, II-371 
Billanes, Joy Dalmacio I-79, I-215, II-254 
Biswas, Debajyoti II-187 
Blaabjerg, Frede I-60 
Bleistein, Thomas II-285 
Bolaños-Zuñiga, Johanna II-67 
Bordin, Chiara I-60 
Botea, Adi II-271 

C 
Caetano, Luis II-130 
Campodonico-Avendano, Italo Aldo II-300 
Carroll, Paula I-255, I-267, II-187, II-271 
Çeliker, Cihat Emre II-338 
Chen, Zhonghe II-271 
Christensen, Kristoffer I-371 
Clauß, John II-130 
Cong, Lu I-237 

D 
Daniel, Lius II-35 
Davidsson, Henrik I-131 

Derbas, Abd Alelah I-60 

E 
Engström, Jesper I-131 

F 
Faisal, Mohammed Farhan I-15 
Fellerer, Jonathan II-3 
Fernengel, Natascha I-323 
Ford, Ryan II-35 
Förderer, Kevin I-323 

G 
Garcia, Rafeal Gomez II-321 
German, Reinhard II-3 
Gölles, Markus II-95 
Guðjónsdóttir, Maria Sigríður II-23 
Gudmundsson, Steinn I-341 

H 
Hagenmeyer, Veit I-323 
Hajsok, Lucija I-283 
Hameed, Akram II-321, II-338, II-371 
Harini, N. II-78 
Hasan, Agus I-3 
He, Yue II-144 
Hehemann, Michael I-323 
Helbrecht, Jana II-3 
Holly, Stefanie I-354 
Holtwerth, Alexander I-323 
Hoppe, Eugen I-323 
Huang, Haoyu I-323 
Huang, Pei I-299 

J 
Johansson, Dennis I-131 
Johra, Hicham II-300 
Jørgensen, Bo Nørregaard I-215, I-237, 

I-371, II-254, II-321, II-338, II-355, 
II-371, II-388

© The Editor(s) (if applicable) and The Author(s), under exclusive license 
to Springer Nature Switzerland AG 2026 
I. Martinac et al. (Eds.): EIA Nordic 2025, LNCS 16095, pp. 387–389, 2026. 
https://doi.org/10.1007/978-3-032-03101-3 

https://doi.org/10.1007/978-3-032-03101-3


388 Author Index

K 
Kamenev, Nikolai II-285 
Kandemir, Ege I-3 
Kayo, Genku I-110 
Khajoei, Najmeh I-341 
Kind, Reidar II-130 
Koelsch, Celina II-285 
Kowli, Anupama II-204 
Kulkarni, Aashay II-285 

L 
L., Alberto J. Lamadrid II-67 
Lassen, Thomas Elvrum II-130 
Liberado, Eduardo I-185 
Lichtenegger, Klaus II-95 
Lien, Synne Krekling II-321, II-338 
Lin, Jeremy I-309 
Lygnerud, Kristina I-79 

M 
Ma, Zheng Grace I-215, I-237, I-371, 

II-321, II-338, II-388 
Ma, Zheng I-79, II-254, II-355, II-371 
Madsen, Frederik Wagner II-254 
Malakhatka, Elena II-173 
Marumoto, Shoya II-114 
Mazidi, Mohammadreza II-173 
Medjdoub, Benachir I-198 
Mehmood, Khawaja Khalid I-32 
Miller, Clayton II-338, II-371 
Mishra, Sambeet I-60 
Miyata, Shohei II-114, II-144, II-154 
Moazami, Amin II-300 
Mori, Taro I-149, I-164, I-173 
Moura, Ranier Alexsander Arruda I-32 
Müller, Dirk I-323 
Muschick, Daniel II-95 
Mutule, Anna II-187 

N 
Najmadin, Abdelmomen I-95 
Nguyen, Phuong Hong I-32 
Niklasson, Felix II-173 
Nixon, Nimisha I-15 
Nordanger, Knut II-130 

O 
Osawa, Hisato I-149, I-164, I-173 
Otani, Kazuma I-164, I-173 

P 
Pandiyan, Surya Venkatesh II-321 
Parvaz, Md I-131 
Plompen, Hendrik I-32 
Pradeep, Jayarama II-78 
Þorvaldsson, Einar Örn I-131 

R 
Radtke, Malin I-354 
Rajasekharan, Jayaprakash II-321 
Ravindra, Nikhil I-198 
Richter, Christiaan I-230 

S 
Safavi, Aysan I-230 
Santana, Emerson I-185 
Sartori, Igor II-321, II-338, II-371 
Schopper, Fabian II-95 
Seema, II-51 
Serrao, Nikith Jude II-78 
Sharma, Desh Deepak I-309 
Shé, Clíodhna Ní I-267 
Shi, Shanrui II-144, II-154 
Sirjani, Reza II-51 
Slimani, Mohamed El-Amine II-23 
Somawanshi, Aditya II-204 
Sridhar, Araavind II-173 
Stark, Sanja I-354 
Steen, David II-173 
Suzuki, Konatsu I-149, I-164, I-173 

T 
Taniguchi, Keiichiro II-114 
Theocharis, Andreas II-51 
Titz, Maurizio II-237 
Tolnai, Balázs András II-321, II-338, II-355, 

II-371, II-388 
Tran, Ngoc II-338 
Tuan, Le Anh II-173 

U 
Unnthorsson, Runar I-230, I-341



Author Index 389

V 
van der Molen, Anne I-32 
van der Wielen, Peter I-32 
Varma, Pamba Raja I-15 

W 
Waczowicz, Simon I-323 
Walker, Sara I-119 
Wallbaum, Holger II-173 
Walnum, Harald Taxt II-321 
White, Stephen II-371 
Witthaut, Dirk II-237 

X 
Xhonneux, André I-323 
Xiang, Jingyu I-255 
Xie, Yangxinyu II-338 

Y 
Yan, Hui I-119 
Yang, Aileen II-300 

Z 
Zafar, Rehman I-299 
Žakula, Tea I-283 
Zimmermann, Rafael Sudbrack II-338


	 Preface
	 Organization
	 Contents – Part I
	 Contents – Part II
	Energy Forecasting and Intelligent Control Systems
	A Multi-stage Deep Learning Framework for Short-Term Electricity Load Forecasting
	1 Introduction
	1.1 Related Works
	1.2 Contribution
	1.3 Outline

	2 Methodology
	2.1 Forecasting Algorithm
	2.2 Data Description

	3 Results and Discussion
	4 Conclusion
	References

	Solaris AI: Enhancing Solar Energy Forecasting with Generative AI and Deep Learning
	1 Introduction
	2 Related Work
	2.1 Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques
	2.2 Hybrid Deep Learning Models for Time Series Forecasting of Solar Power
	2.3 Investigating Photovoltaic Solar Power Output Forecasting Using Machine Learning Algorithms
	2.4 EF-LLM: Energy Forecasting LLM with AI-Assisted Automation, Enhanced Sparse Prediction, Hallucination Detection

	3 Methodology
	3.1 Data Selection and Preprocessing
	3.2 Initial ANN Model
	3.3 Liner Regression Model for Comparison
	3.4 LSTM Model for Time-Series Forecasting
	3.5 LangChain Framework for Retrieval-Augmented Generation (RAG)
	3.6 Cloud Deployment Using AWS

	4 Results and Discussion
	4.1 ANN Model Performance
	4.2 Long-Short Term Model Performance and its Comparison with Linear Regression
	4.3 Generative AI with RAG Integration
	4.4 Cloud Deployment and System Scalability

	5 Conclusion and Future Work
	References

	A Tool for Synthesizing and Implementing Medium Voltage Load Profiles
	1 Introduction
	1.1 Related Works
	1.2 Contribution

	2 Methods
	2.1 Preprocessing
	2.2 Clustering
	2.3 Multivariate Elliptical Copulas
	2.4 Validation

	3 Tool Design
	4 Case Study
	5 Results
	6 Discussion
	7 Conclusion
	A Appendix: Step by Step Guide
	A.1 Preface
	A.2 Feature selection
	A.3 Initialization
	A.4 Importing data
	A.5 Preprocessing
	A.6 Clustering
	A.7 Generation
	A.8 Implementation
	A.9 Congestion results
	A.10 Validation

	References

	Decentralized Reinforcement Learning for Adaptive Power Sharing in Hybrid DC Microgrids
	1 Introduction
	2 System Architecture
	2.1 Hybrid DG Unit Configuration
	2.2 DC Bus and Load Interface
	2.3 Decentralized Control Architecture

	3 Dynamic Modeling for Decentralized Control
	3.1 Integrated Modeling of Hybrid DG Units with Buck Converter Interface

	4 Reinforcement Learning-Based Voltage Control Framework
	4.1 Data-Driven Voltage Reference Generation
	4.2 Policy Learning and Deployment
	4.3 Decentralized and Scalable Operation

	5 Simulation and Results
	5.1 Scenario 1: Load Variation
	5.2 Scenario 2: Impact of High Line Impedance

	6 Conclusion
	References

	District Heating, Thermal Systems, and Retrofit Strategies
	Digitalization in District Heating: Comparative Insights from Denmark and Sweden on Adoption, Barriers, and Value Creation
	1 Introduction
	2 Literature Review
	2.1 Digitalization and Operational Performance in District Heating
	2.2 Customer Engagement and Demand-Side Digitalization
	2.3 Data Analytics and Artificial Intelligence in DH
	2.4 Organizational Readiness and Business Model Innovation
	2.5 Policy, Regulation, and Data Governance

	3 Methodology
	4 National Perspectives on Digitalization in DH: Insights from Denmark and Sweden
	4.1 Denmark
	4.2 Sweden

	5 Cross-Country Insights on Digitalization Progress, Challenges, and Enablers
	5.1 Patterns of Digital Adoption Across Domains
	5.2 Perceived Benefits and Value Creation
	5.3 Barriers to Digital Transformation
	5.4 Enablers for Scaling Digitalization

	6 Policy and Strategic Recommendations for Scaling Digitalization in DH
	6.1 Priorities Emerging from Cross-Country Lessons
	6.2 Policy Measures and Implementation Actions
	6.3 Strengthening Sectoral Readiness and Innovation Capacity
	6.4 Broader Applicability and International Relevance

	7 Conclusion
	References

	Evaluating Retrofit Strategies and Decentralized Systems for the Transition to Low-Temperature District Heating: A Simulation-Based Case Study in Borlänge, Sweden
	1  Introduction
	1.1  Context and Motivation
	1.2 Problem Statement and Research Gap
	1.3  Research Objectives

	2  Literature Review and Theoretical Context
	3 Methodology
	3.1 Case Study Area and Simulation Platform
	3.2 Simulation Framework and Scenario Development

	4 Results and Discussion
	4.1 Seasonal Energy Demand Profiles
	4.2  Emissions Impact: Operational and Embodied Carbon
	4.3  Solar Energy Utilization Potential
	4.4  Decentralized Supply System Performance and Optimization

	5  Conclusion
	6 Appendices
	References

	Parametric Study Model for Observing Exergy Balance Through the Series of Subsystems in District Heating
	1 Introduction
	1.1 Energy Theory
	1.2 Objectives

	2 Methodology
	2.1 System Configuration
	2.2 Exergy Balance Equation at Subsystems
	2.3 Model Development
	2.4 Study Case
	2.5 Parameter Setting

	3 Results and Discussion
	3.1 Exergy Balance of Each Archetype
	3.2 Parametric Study

	4 Conclusions
	References

	Demand-Side Frequency Response Based on District Heating System Integrated with Heat Pump
	1 Introduction
	2 Model Development
	2.1 System Description
	2.2 Dynamic Model of the Heat Pump
	2.3 Dynamic Model of the District Heating System
	2.4 Demand-Side Frequency Response

	3 Results and Discussion
	3.1 Dynamic Performance of Heat Pump and Heat Network
	3.2 Frequency Stability Improvement Using Heating System with Heat Pump

	4 Conclusion
	References

	A Parametric Optimization Approach for Enviro-Economic Evaluation of Energy Renovation Strategies – A Case Study on a Congregation House in Southern Sweden
	1 Introduction
	2 Methodologies
	2.1 Passive Measures
	2.2 Active Measures
	2.3 Life Cycle Cost
	2.4 Life Cycle Assessment
	2.5 Parametric Optimization
	2.6 Regulations and Environmental Certification

	3 Results and Discussion
	3.1 Parametric Optimization
	3.2 Sensitivity Analysis
	3.3 Ventilation
	3.4 Regulations and Environmental Certification

	4 Conclusions
	References

	Building Simulation, Urban Energy, and Environmental Sensing
	Development of an Automated 3D Building Modeling Method and Urban-Scale Analysis of Heating and Cooling Loads
	1 Introduction
	2 Method
	2.1 Target Area
	2.2 3D Modeling of Commercial Buildings
	2.3 3D Modeling of Residential Buildings

	3 Results and Discussion
	4 Conclusion
	5 Limitations and Future Directions
	References

	Research on 3D Modeling for Thermal Environment Simulation Using Publicly Available Map Data
	1 Introduction
	2 3D Modeling Using Publicly Available Map Data
	2.1 Modeling Outline
	2.2 Detailed Modeling Procedure

	3 Simulation of Building Energy Consumption
	3.1 Method
	3.2 Simulation and Validation for Category a Buildings
	3.3 Simulation and Validation for Category B Buildings

	4 Discussion
	5 Conclusion and Future Perspectives
	References

	Rooftop Irregularity Segmentation in Aerial Imagery Using Deep Learning
	1 Introduction
	2 Method
	2.1 Hyperparameters
	2.2 Preparation of Input and Test Images
	2.3 Creation of Ground Truth
	2.4 Training and Inference Conditions
	2.5 Weighted Overlay Method
	2.6 Evaluation Metrics and Methods

	3 Results
	3.1 Inference Results for Each Condition
	3.2 Results of Overlaying Inference Images

	4 Discussion
	4.1 Inference of Protruding Parts and Depressed Parts
	4.2 Overlaying Inference Results

	5 Conclusion
	References

	Autonomous Air Quality Monitoring System with Photovoltaic Energy Harvesting: A Sustainable Approach for Public Policies
	1 Introduction
	2 Energy Harvesting and Air Quality Monitoring Technologies and Applications
	2.1 PMIC
	2.2 Air Quality Sensors

	3 Methodology
	4 Prototype
	4.1 Sensor and Microcontroller
	4.2 Power Management and Energy Harvesting
	4.3 Energy Optimization
	4.4 System Architecture
	4.5 Data Transmission and Telemetry Simulation

	5 Results and Discussion
	6 Conclusion
	References

	How Clean is the Air You Breathe During Urban Walk? A Case Study of Central London
	1 Introduction
	2 Research Outline
	3 Literature Study
	3.1 Engine Idling and Ultra-Low Emission Zone
	3.2 Electric Vehicles and Integration Using Artificial Intelligence
	3.3 Innovative Green Infrastructure

	4 Methodology
	5 Data Collection
	6 Results
	7 Conclusion and Future Work
	References

	Industrial Process Efficiency and Biomass Utilization
	Examining the Role of Digital Technologies and Artificial Intelligence in Climate Resilience and Energy Adaptation Within Energy-Intensive Industries
	1 Introduction
	2 Literature Review
	2.1 Digital Technologies and AI in Industry
	2.2 Digital Technologies and AI Role in Climate Resilience and Energy Adaptation
	2.3 Challenges in Integrating AI into Energy-Intensive Industries

	3 Methodology
	4 Results
	4.1 Climate and Energy Policies
	4.2 Application of Digitalization and AI

	5 Discussion
	6 Conclusion
	References

	Energy Efficiency Optimization in Plastic Pyrolysis: A Data-Driven Modeling Study
	1 Introduction
	2 Methodology
	3 Results and Discussion
	3.1 Conversion Behavior Under Varying Heating Rates
	3.2 Energy Efficiency and Yield Metrics
	3.3 Implications for Energy Optimization

	4 Conclusion
	References

	Globally Optimal Scheduling for Industrial Energy Cost Reduction Under Dynamic Electricity Pricing
	1 Introduction
	2 Literature Review
	2.1 Scheduling Optimization Under Dynamic Electricity Pricing
	2.2 Advanced Techniques
	2.3 Limitations and Research Gap

	3 Data-Driven Scheduling Optimization Framework
	3.1 Overview and Framework Design
	3.2 Synthetic Data Generation for Controlled Method Design
	3.3 Cost Calculation Procedure
	3.4 Batch Scheduling Optimization Procedure
	3.5 Validation with Real Industrial Data

	4 Case Study: Energy Cost Optimization in a Danish Foundry
	5 Results
	5.1 Cost Analysis Based on Synthetic Data
	5.2 Batch Identification and Cost Analysis from Operational Data
	5.3 Single Batch Optimization
	5.4 Global Schedule Optimization

	6 Discussion
	7 Conclusion
	References

	Energy Informatics for Electric Vehicles and Mobility Systems
	The Irish Highway Network: A Novel Test Instance for the Charging Station Location Problem
	1 Introduction
	2 Literature Review
	3 Highway Network Construction Methodology for CSLP
	3.1 Node Placement and Highway Connnections
	3.2 EV Traffic Flow Estimation

	4 Results and Analysis
	4.1 Size and Scale
	4.2 Connectivity
	4.3 Diameter, Average Path Length, and Average Edge Length

	5 Conclusion and Findings
	References

	Enhancing EVRP Benchmark Instances with Energy Estimates
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Data Understanding
	3.2 Data Preparation
	3.3 Modelling
	3.4 Evaluation
	3.5 Deployment

	4 Results
	5 Discussion and Conclusion
	References

	Economic and Environmental Benefits of Centralized MILP Optimization of EV Fleet Charging
	1 Introduction
	2 Case Study Overview
	2.1 Optimization Inputs and Constraints
	2.2 Optimization Method
	2.3 Scenario Definition for Comparative Analysis

	3 Results and Discussion
	3.1 Economic Performance: Cost Comparison
	3.2 Environmental Impact: CO2 Emission and Sustainability
	3.3 Discussion

	4 Conclusion
	References

	Electric Vehicle Based Virtual Electricity Network (EVEN) Solution for Performance Enhancement in Distribution Networks
	1 Introduction
	2 Methodology
	2.1 Control of EVs for Electricity Delivery in the EVEN Solution
	2.2 Hosting Capacity Analysis
	2.3 Modelling of Battery Cycling Degradation

	3 Case Studies and Results
	3.1 Description of the Systems Considered
	3.2 Grid Performance Improvement via EVEN Solution
	3.3 Battery Degradation Results

	4 Conclusions
	References

	Variational Quantum Eigensolver-Based CaaS Business Model for V2G
	1 Introduction
	1.1 Research Gap
	1.2 Contributions

	2 Charging-As-A-Service with Subscription Model for V2G
	2.1 Notation and Definitions
	2.2 Revenue Model
	2.3 Cost Model
	2.4 Problem Formulation

	3 Proposed VQE for Energy Cost Optimization in V2G CaaS
	3.1 Penalty-Based Reformulation:

	4 Results and Discussion
	4.1 Basic Tier
	4.2 Standard Tier
	4.3 Premium Tier
	4.4 Energy Delivery Analysis
	4.5 Revenue Analysis
	4.6 Key Features of the Schedule

	5 Conclusion
	References

	Multi-Agent Systems and Local Market Coordination
	Towards ICT-Enabled Multi-agent Based Operations in Local Energy Communities: A Proof of Concept
	1 Introduction
	2 Related Work
	3 Research Environment
	4 Methodology
	4.1 Agent Modeling and Roles
	4.2 Market Design and Clearing Mechanism
	4.3 Agent Communication Framework
	4.4 Experimental Setup

	5 Results
	5.1 Step 1: Simulated Agents
	5.2 Step 2: System Response to Exemplary Market-Cleared Setpoint Trajectories
	5.3 Step 3: Real-Time Connection

	6 Discussion
	6.1 Interpretation of Results
	6.2 Practical Challenges of Hardware Integration
	6.3 System-Level Considerations

	7 Conclusion
	References

	Peer-to-Peer Energy Management Model for Residential Homes
	1 Introduction
	2 Methods
	2.1 Mathematical Model
	2.2 Properties of Batteries and Solar Panels
	2.3 Data and Software

	3 Results
	4 Conclusions
	References

	Agent-Based Flexibility Aggregation for a Distributed Redispatch
	1 Introduction
	2 Setting
	3 Related Work
	4 Baseline Optimization
	5 Flexibility Calculation
	5.1 Battery Storage Flexibility
	5.2 Heat Pump Flexibility

	6 Optimization of Flexibility Pools
	7 Illustrative Example
	8 Comparative Case Study
	8.1 Market-Restricted Power Flexibility Calculation
	8.2 Scenario Set-Up
	8.3 Results

	9 Conclusion and Outlook
	References

	A Visualization Framework for Exploring Multi-agent-Based Simulations: Case Study of an Electric Vehicle Home Charging Ecosystem
	1 Introduction
	2 Related Work
	2.1 Visualization in Energy and Mobility ABMs
	2.2 Temporal and Interactive Visualization Approaches
	2.3 Need for Scalable, Multi-level Exploration Tools

	3 Case Study: EV Home Charging
	4 Dashboard System Architecture
	4.1 Data Processing Pipeline
	4.2 Dashboard Design
	4.3 Case Study Highlights

	5 Discussion
	6 Conclusion
	Appendix
	References

	Author Index



